
(On) The Impact of the Micro-
architecture on Countermeasures 

against Side-Channel Attacks

PhD Student:
Lorenzo Casalino

Supervisors:
Nicolas Belleville
Damien Couroussé
Karine Heydemann 

30/01/2024



L. CASALINO - Soutenance de Thèse

Embedded Systems and Side Channels

2

Embedded
System

Observe
Side Channel

Statistically
Analyse

Side Channel

Recover
Information

An attacker can
exploit side channels
to recover information

Statistical
Link

Step #1 Step #2 Step #3

Sensitive
Information

Side Channel
(EM, power, sound)

Embedded systems
have observable effects
(side channels) on the
surrounding environment

The processed information
Influences the side channel

30/01/2024



L. CASALINO - Soutenance de Thèse 3

Masking to the Rescue!

Masking
Function

Random Variables
(shares)

𝑓𝑋

Sensitive
Information

𝑋0, 𝑋1, … , 𝑋𝑁

Break
Statistical Link

Statistical
Link

𝑋0, 𝑋1, … , 𝑋𝑁

Masking Order

Random variables influence
side channel.
Attacker recovers random values.
Sensitive information protected

Remove link between
sensitive
information and
side-channel

Masking encodes
Information with

random variables

30/01/2024



L. CASALINO - Soutenance de Thèse 4

Masking: a Software Example

Algorithm

𝐶 = 𝐴 𝑎𝑛𝑑 𝐵

30/01/2024

Input
to

Boolean
Masking

Random Variables
(shares)

𝑓
𝐴0, 𝐴1

𝐵0, 𝐵1

Sensitive
Information

𝐴

𝐵



L. CASALINO - Soutenance de Thèse 5

Masking: a Software Example

Boolean
Masking

Random Variables
(shares)

𝑓

Boolean
Masking

𝑓

Input
to

Algorithm

C-like Masked
Algorithm

Input
to

𝐶 = 𝐴 𝑎𝑛𝑑 𝐵

𝐴0, 𝐴1

𝐵0, 𝐵1

30/01/2024

Sensitive
Information

𝐴

𝐵



L. CASALINO - Soutenance de Thèse 6

Independent Leakage Assumption (ILA)

DO NOT RECOMBINE
𝑋0, 𝑋1, … , 𝑋𝑁

Each (sub-)computation must not 
recombine the shares

IS IT ENOUGH ?

30/01/2024



L. CASALINO - Soutenance de Thèse 7

Violation of the ILA
• A CPU executes an implementation of an algorithm

• An Implementation employs architectural registers
• Memory elements to save temporary values

• The re-use of registers recombines the shares
• We call it transition-based leakages

• From the compiled <secAnd2> example:
• Register 𝑹𝟎 and 𝑹𝟐
• 𝑹𝟎’s re-use: 𝑨𝟎 → 𝑨𝟏

• 𝑹𝟐’s re-use: 𝑩𝟏 → 𝑩𝟎

Compile

30/01/2024



L. CASALINO - Soutenance de Thèse 8

Violation of the ILA
• A CPU executes an implementation of an algorithm

• An Implementation employs architectural registers
• Memory elements to save temporary values

• The re-use of registers violates the ILA
• We call it transition-based leakages

• From the compiled <secAnd2> example:
• Register 𝑹𝟎 and 𝑹𝟐
• 𝑹𝟎’s re-use: 𝑨𝟎 → 𝑨𝟏

• 𝑹𝟐’s re-use: 𝑩𝟏 → 𝑩𝟎

• Solutions:
1. Avoid register re-uses

Avoid register re-usesCompile

30/01/2024



L. CASALINO - Soutenance de Thèse 9

Violation of the ILA
• A CPU executes an implementation of an algorithm

• An Implementation employs architectural registers
• Memory elements to save temporary values

• The re-use of registers violates the ILA
• We call it transition-based leakages

• From the compiled <secAnd2> example:
• Register 𝑹𝟎 and 𝑹𝟐
• 𝑹𝟎’s re-use: 𝑨𝟎 → 𝑨𝟏

• 𝑹𝟐’s re-use: 𝑩𝟏 → 𝑩𝟎

• Solutions:
1. Avoid register re-uses
2. Flush (i.e., overwrite)

the leaking registers

Flushing

Compile Avoid register re-uses

30/01/2024



L. CASALINO - Soutenance de Thèse 10

The Elephant in the Room
• A CPU hides more complex structures: micro-architectures

• An Implementation employs:
• Architectural registers
• Micro-architectural registers
• Functional units
• Wires

30/01/2024



L. CASALINO - Soutenance de Thèse 11

The Elephant in the Room
• A CPU hides more complex structures: micro-architectures

• An Implementation employs:
• Architectural registers
• Micro-architectural registers
• Functional units
• Wires

30/01/2024



L. CASALINO - Soutenance de Thèse 12

The Elephant in the Room
• A CPU hides more complex structures: micro-architectures

• An Implementation employs:
• Architectural registers
• Micro-architectural registers
• Functional units
• Wires

30/01/2024



L. CASALINO - Soutenance de Thèse 13

The Elephant in the Room
• A CPU hides more complex structures: micro-architectures

• An Implementation employs:
• Architectural registers
• Micro-architectural registers
• Functional units
• Wires

30/01/2024



L. CASALINO - Soutenance de Thèse 14

The Elephant in the Room
• A CPU hides more complex structures: micro-architectures

• An Implementation employs:
• Architectural registers
• Micro-architectural registers
• Functional units
• Wires

Data Path
Data processing

Memory reading

30/01/2024



L. CASALINO - Soutenance de Thèse 15

How Does a Micro-architecture Leak?

A0

B1

B1B1

0

0

0

0

B1

• The CPU read B1 from the memory
• The read uses the memory data path

0

30/01/2024



L. CASALINO - Soutenance de Thèse 16

How Does a Micro-architecture Leak?

B1

B1B1

A0 & B1

0

• The CPU read A0 and B1 from the Reg. File
• The and uses the ALU data path

0

A0

B1

0

A0

A0

A0

A0 A0 & B1

B1

B1

B1

B1 -> A0 & B1

30/01/2024



L. CASALINO - Soutenance de Thèse 17

How Does a Micro-architecture Leak?

A0

B1 -> B0

B1 -> B0B1

A0 & B1

B0

A0

• The CPU reads B0 from the memory
• The read uses the memory data path
• Transition-based leakage on the memory data path
• Transition-based leakage on the shared data path

0

A0 A0

A0 A0 & B1

B1

B1

B1

A0 & B1 -> B0

30/01/2024



L. CASALINO - Soutenance de Thèse 18

How Do We Handle the Micro-architectural Leakage?

A0

B1 -> Rnd

B1 -> RndB1

A0 & B1

B0

A0

• Solution: flush (overwrite) data path
• Approach #1: re-schedule 𝑹𝟎 = read Rnd

0

A0 A0

A0 A0 & B1

B1

B1

B1

A0 & B1 -> Rnd

30/01/2024



L. CASALINO - Soutenance de Thèse 19

How Do We Handle the Micro-architectural Leakage?

A0

B1 -> #0

B1 -> #0B1

A0 & B1

B0

A0

• Solution: flush (overwrite) data path
• Approach #1: re-schedule 𝑹𝟎 = read Rnd
• Approach #2: create and insert ad-hoc instruction

0

A0 A0

A0 A0 & B1

B1

B1

B1

A0 & B1 -> #0

30/01/2024



• We can prove security of masked algorithms (ILA satisfied)

• Yet, the security proofs does not immediately translate to implementations

• What solutions can we provide?

20

Research Question and Thesis Contributions

1st Contribution
Automated Mitigation 

Transition-based Leakages

2nd Contribution
The Impact of the Micro-
architecture on Masking 

Schemes

+
Micro-architecture

InformationSoftware
Implementation

Modification

1st Solution

Employment of 
alternative 

masking schemes

2nd Solution

30/01/2024



L. CASALINO - Soutenance de Thèse 21

Automated 
Methodology to 
Mitigate Transition-
based Leakages1

++

30/01/2024



L. CASALINO - Soutenance de Thèse 22

Overview of the Compilation Process
COMPILER MODULAR ORGANIZATION

30/01/2024



L. CASALINO - Soutenance de Thèse 23

Overview of Mitigation Approaches

• Pro-Active Approach:
• Mitigation during compilation
• Exploit information on the 

program
• Retrieved by the compiler

• More effective leakage 
mitigation

• Reactive Approach:
• Mitigation after compilation
• No information on the program
• Less effective leakage mitigation

Pro-Active Approach Reactive Approach

30/01/2024



L. CASALINO - Soutenance de Thèse 24

Requirements

+

Masking
information 

Micro-architecture
Information

Adapt
Back-end

• Goal: produce a leakage-free 
implementation

• Requirements:

1. Identify intermediate variables to keep 

apart

2. Specify micro-architectural details

3. Adapt back-end to avoid transition-

based leakages

# 1

# 2

# 3

30/01/2024



L. CASALINO - Soutenance de Thèse 25

Requirement #1: Masking Information

Goal: identify intermediate
variables to keep
apart

Compiler works
on

30/01/2024



L. CASALINO - Soutenance de Thèse 26

Requirement #1: Masking Information

Compiler works
on

Goal: identify intermediate
variables to keep
apart

Encoding Tag Identify input shares
and random
variables

- Share Information -

30/01/2024



L. CASALINO - Soutenance de Thèse 27

Requirement #1: Masking Information

Compiler works
on

Goal: identify intermediate
variables to keep
apart

Propagate input
dependencies
and statistical
uniformity
to intermediate
variables

Encoding Tag

Statistical
Uniformity

Input
dependencies

- Share Propagation -

30/01/2024



L. CASALINO - Soutenance de Thèse 28

Requirement #1: Masking Information

Compiler works
on

Goal: identify intermediate
variables to keep
apart

Compiler computes
a leakage relation
expressing which
recombinations leaks
information

Which allows

- Leakage Relation -

30/01/2024



L. CASALINO - Soutenance de Thèse 29

Requirements
• Goal: produce a leakage-free 

implementation

• Requirements:

1. Identify intermediate variables to keep 

apart

2. Specify micro-architectural details

3. Adapt back-end to avoid transition-

based leakages

+

Masking
information 

Micro-architecture
Information

Adapt
back-end

# 1

# 2

# 3

30/01/2024



L. CASALINO - Soutenance de Thèse 30

Requirement #2: Micro-architectural Information
• Question: how data flow in the micro-architecture?

• Which data path (wires + Fus + registers) they take?
• At what time they are processed and stored?

30/01/2024

Data processing

Memory Reading



L. CASALINO - Soutenance de Thèse 31

Requirement #2: Micro-architectural Information
• Question: how data flow in the micro-architecture?

• Which data path (wires + Fus + registers) they take?
• Map Instruction -> data path

• At what time they are processed and stored?
• Map FU -> timing information (latency, pipelined)

Data processing

Memory Reading

30/01/2024



L. CASALINO - Soutenance de Thèse 32

Requirements
• Goal: produce a leakage-free 

implementation

• Requirements:

1. Identify intermediate variables to keep 

apart

2. Specify micro-architectural details

3. Adapt back-end to avoid transition-

based leakages

+

Masking
information 

Micro-architecture
Information

Adapt
back-end

# 1

# 2

# 3

30/01/2024



L. CASALINO - Soutenance de Thèse 33

Requirement #3: Adapt Compiler’s Back-end
• Question: how to mitigate transition-based leakages?

• Careful Register Allocation

• Careful Instruction Scheduling

• Adaptation steps:
1. Introduce concept of state 𝑺𝝁 :

■ Register allocation: architectural registers content
■ Instruction scheduling:

■ Data on the data path 
■ FU execution state (ready, busy, ready in 𝑇 time instants)

2. Simulate state evolution: update heuristic to update 𝑺𝝁 with
each choice

3. Leakage constraint: transition-based leakage cannot occur in 𝑺𝝁
4. Choice selection: check leakage constraint

Code 
Generation
Algorithms

30/01/2024

A0

B1

A0 & B1

B0

0

B0

B0

B0



• All intermediate choice leaks:
• Register allocation: cannot change register
• Instruction scheduling: cannot change

instructions order
• Flushing: add instructions to:

• Register allocation : overwrite leaking 
register

• Instruction scheduling : overwrite leaking
data path

L. CASALINO - Soutenance de Thèse 34

Requirement #3: Guarantee Convergence

• Remarks: add an instruction -> increase exec. 
time
• Flush only if needed
• Overwrite with constant values

Reduce Performance Impacts

30/01/2024

Flushing examples



L. CASALINO - Soutenance de Thèse 35

Requirements
• Goal: produce a leakage-free 

implementation

• Requirements:

1. Identify intermediate variables to keep 

apart

2. Specify micro-architectural details

3. Adapt back-end to avoid transition-

based leakages

+

Masking
information 

Micro-architecture
Information

Adapt
back-end

# 1

# 2

# 3

30/01/2024



1. Methodology Implementation
1. Modification of LLVM-based Compiler
2. Modified passes in grey boxes

2. Experimental Setup
1. Benchmark: SIMON-128/128

• First and second order Boolean masked
• Verified correct under ILA assumption

2. CPU: Cortex-M4 (STM32F303)
• Micro-arch. model inferred by public knowledge

3. Acquisition: Chipwhisperer-1200
4. Side-channel: power consumption

3. Evaluation axes
1. Security
2. Performance

L. CASALINO - Soutenance de Thèse 36

Experimental Evaluation
Enhanced LLVM Compiler Pipeline

30/01/2024



L. CASALINO - Soutenance de Thèse 37

Security Evaluation

This Work
1st-order1st-order 2nd-order

x6 reduction
of leakage peaks 

• Methodology: detect information leakage along execution of SIMON-128/128 implementation
• Blue lines: borders of the leakage-free area
• Orange peaks: variation of the information leakage metric

30/01/2024



• (One) Root cause: new memory-related transition-based
leakage
• Interaction between Z and Y
• Observation: Interleaving write and read with a nop

• (Potential) Explanation:
• Memory optimization
• If write and read back-to-back: read served first

Conclusion:

• Micro-architectural information still incomplete

30/01/2024L. CASALINO - Soutenance de Thèse 38

Security Evaluation—Root Cause Analysis



L. CASALINO - Soutenance de Thèse 39

Execution Time Overhead Evaluation

Micro-architectural model incomplete

• More transition-based leakage to handle

• Potentially, worse performance figures for 1st-P

• Yet, we won’t invert the plotted trend in real use cases

Considered 3 PRNG throughputs:

• Ideal: 1 clock cycle per byte

• Real #1: 10 clock cycles per byte

• Real #2: 40 clock cycles per byte

(PRNG throughtput)

Remarks:
• Masking requires randomness

• PRNG throughtput impacts on execution 
time

• Randomness exponentially increase with 
masking order

• Our methodology (1st-P) requires same
randomness of naïve 1st-order 
implementation

30/01/2024



• Contribution: automated methodology to mitigate transition-based leakages
• Goal: investigating employment of fine-grained micro-architectural details
• How: adapting compilation tools
• Results: unexpected leakage sources prevent fair assessment of the approach

• Related Work:
• Pro-active [Seuschek17][Wang19][Tsoupidi23]:

• Show how to guarantee convergence to a leakage-free solution
• Show which micro-architectural information to consider and how to integrate 

It

• We need further investigation:
• How:

• Full micro-architectural model
• Open-source micro-architecture designs

L. CASALINO - Soutenance de Thèse 40

Summary and Conclusion

30/01/2024



L. CASALINO - Soutenance de Thèse 41

The Impact of the 
Micro-architecture 
on Masking Schemes2

30/01/2024



30/01/2024L. CASALINO - Soutenance de Thèse 42

Micro-architecture and Alternative Masking 
Schemes

Literature on micro-architecture’s impact

Boolean masking
(particularly sensitive to transition-based leakages)

main focus

(Again) Literature on micro-architecture’s impact, e.g., [Meyer20]

Arithmetic-Sum Masking

suggest to use

Alternative Masking

Inner-Product Masking
(immune to transition-based leakages)



Only Transition-based Leakages are a Threat?

L. CASALINO - Soutenance de Thèse 43

• Modern micro-architectures exhibit data parallelism
• The CPU read A0 and B1 from the Reg. File
• The and uses the ALU data path
• Meanwhile, B0, requested from previous read, enters

the micro-architecture
• We see B0 and B1 at the same time (in parallel)

B0

B0

B1

B1

B1

30/01/2024



Only Transition-based Leakages are a Threat?

L. CASALINO - Soutenance de Thèse 44

• Assumption: CPU processes one share per clock cycle
• Actually: micro-architectures exhibit data parallelism
• The CPU read A0 and B1 from the Reg. File
• The and uses the ALU data path
• Meanwhile, B0 (from previous read) enters

the micro-architecture
• We see B0 and B1 at the same time (in parallel)

B0

B0

B1

B1

B1

30/01/2024



• We cannot efficiently exploit data 
parallelism as it is
• We need higher-order statistical analyses
• We need more side channel observations

• Moos and Moradi shown how to efficiently 
take advantage of these parallelism 
[Moos17]
• How: filter out certain leakage values 

(distribution bias)
• Target: Boolean masked hardware

implementations

L. CASALINO - Soutenance de Thèse 45

Masked Hardware and Data Parallelism
Side channel distribution for two 
sensitive values (in red and blue)

Biased side channel distribution 

30/01/2024



L. CASALINO - Soutenance de Thèse 46

Masking Schemes: an Observation

TbL
Parll

Masking Transition-
Based Leakage

(TbL)

Data
Parallelism

(Parll)
Boolean

(BM)
Sensitive Sensitive

Arithmetic 
(ASM)

Sensitive Sensitive

Inner-Product
(IPM)

Not Sensitive Sensitive

• Data parallelism might be a threat to:
• Transition-based immune masking schemes (i.e., IPM)
• Software implementations with all transition-based 

leakages mitigated

30/01/2024



1. Observation of data parallelism
2. Exploitability of data parallelism
3. Leakage Resilience of Fully Masked

Implementations

L. CASALINO - Soutenance de Thèse 47

Outline of the Investigation

30/01/2024



• Correlation-based analysis: analyze the dependency between:
• Observed side channel
• Leakage model

• Leakage model: side channel expected behavior when processing an information 𝑋

• Correlation coefficient 𝜌 : quantify the dependency between two entities

L. CASALINO - Soutenance de Thèse 48

Correlation-based Analysis 101

𝜌 [𝐻𝑊 𝑋 , 𝑇]

Leakage Model Observed Side Channel

Side Channel

30/01/2024



Method:

1. Carefully design code snippet to exhibit data parallelism

2. Run snippet on target CPU

3. Observe side channel behavior 𝑇 of CPU

4. Choose leakage model for data parallelism

5. Perform correlation-based analysis

Results: correlation with expected behavior in case of data 
parallelism

Observation of data parallelism

L. CASALINO - Soutenance de Thèse 49

𝜌 [𝑆𝐻𝑊 𝑋0, 𝑋1 , 𝑇]

𝑆𝐻𝑊 𝑋0, 𝑋1 = 𝐻𝑊 𝑋0 + 𝐻𝑊 𝑋1
share’s contribution
to side channel

𝜌 [𝑆𝐻𝑊 𝑋0, 𝑋1 , 𝑇]

30/01/2024



1. Detect data parallelism
2. Exploitability of data parallelism
3. Leakage Resilience of Fully Masked

Implementations

L. CASALINO - Soutenance de Thèse 50

Outline of the Investigation

30/01/2024



Exploitability of data parallelism

L. CASALINO - Soutenance de Thèse 51

Naïve correlation-based analysis does not work

• Correlation-based analysis is a first-order analysis

• We need higher-order analyses, or…

… biasing the observed leakage behavior [Moos17]
and

custom leakage model

Results:
■ Data-parallelism exploited

𝜌[SHWfo, %k 𝑋 , 𝑇%𝑘]

𝜌 [𝐻𝑊 𝑋 , 𝑇]

SHWfo, %k 𝑋 = 𝑚𝑒𝑎𝑛 𝒟(𝐻𝑊 𝑋0)+𝐻𝑊(𝑋1) ,%𝑘

30/01/2024



1. Detect data parallelism
2. Exploitability of data parallelism
3. Leakage Resilience of Fully Masked

Implementations

L. CASALINO - Soutenance de Thèse 52

Outline of the Investigation

30/01/2024



Leakage Resilience of Fully Masked Implementations

L. CASALINO - Soutenance de Thèse

Use cases: 
• Self-implemented 1st order 

masked AES-128
• Verified correct under ILA 

assumption
Effects:
• Transition-based leakages
• Data parallelism
Method:
• Correlation-based analysis
Results:

• Recovered the sensitive 
information

CORTEX-M3 CORTEX-M4

Boolean
Masking

Arithmetic
Masking

Inner-
Product
Masking

Data-
Parallelism

Data-
Parallelism

Transitions

TransitionsTransitions

Transitions

5330/01/2024



All that Glitters is not Gold, Pt.2

L. CASALINO - Soutenance de Thèse 54

Inner-Product Masking – AES-128

Transitions Transitions

• Methodology: detect information leakage 
along execution of IPM AES-128 
implementation
• Expected result: no leakage

• Implementation correct under ILA
• IPM immune to transition-based 

leakage
• Actual result: unexpected leakage

• Root cause: log/alog-based 
multiplication + transition-based 
leakage

• Exploitable?
• Correlation-based analysis
• Result: yes, it is exploitable 

CORTEX-M4CORTEX-M3

HDfo,log 𝑋 = 𝑚𝑒𝑎𝑛(HD log3(𝑋0 , log3 𝑋1 ))

𝜌[HDfo,log 𝑋 , 𝑇%𝑘]

30/01/2024



1. Observation data parallelism
2. Exploitability of data parallelism
3. Leakage Resilience of Fully Masked

Implementation

L. CASALINO - Soutenance de Thèse 55

Outline of the Investigation

30/01/2024



• Contribution: Investigating security impact of micro-architecture on masking schemes
• Goal: explore alternative masking schemes to mitigate micro-architecture impact
• How:

1. Detect leakage effects on target platform
2. Analyse exploitability of detected leakage effects

• Results:
• Efficient exploitation of data parallelism against analysed masking schemes
• The multiplication algorithm degrades expected security guarantees of Inner-Product 

masking

• Conclusions:
• Micro-architecture might induce new angle of attacks
• Masked implementations as an interconnected systems

• Security evaluation needs to consider both subsystems and their interaction

L. CASALINO - Soutenance de Thèse 56

Summary and Conclusions

30/01/2024



L. CASALINO - Soutenance de Thèse 57

Conclusions and 
Perspectives3

30/01/2024



L. CASALINO - Soutenance de Thèse 58

Epilogue of a Three-Year Long Journey

How to mitigate security degradation induced by the 
micro-architecture?

CONCLUSION:

Micro-architecture hard to handle

Consider fine-grained micro-architectural 
details:
• Automate transition-based leakages 

mitigation

Do not consider micro-architectural details:

• Employ transition-based resilient 
masking schemes

30/01/2024

Two  orthogonal approaches



L. CASALINO - Soutenance de Thèse 59

Epilogue of a Three-Year Long Journey

How to mitigate security degradation induced by the 
micro-architecture?

CONCLUSION:

Micro-architecture hard to handle

Consider fine-grained micro-architectural 
details:
• Automate transition-based leakages 

mitigation

Do not consider micro-architectural details:

• Employ transition-based resilient 
masking schemes

30/01/2024

Two  orthogonal approaches

Unexpected transition-
based leakages (i.e., 
memory-related 
leakage)

Unexpected exploitable 
effects (i.e., data 

parallelism)



L. CASALINO - Soutenance de Thèse 60

Epilogue of a Three-Year Long Journey

How to mitigate security degradation induced by the 
micro-architecture?

CONCLUSION:

Micro-architecture hard to handle

But we can do it

Consider fine-grained micro-architectural 
details:
• Automate transition-based leakages 

mitigation

Do not consider micro-architectural details:

• Employ transition-based resilient 
masking schemes

30/01/2024

Two  orthogonal approaches

Unexpected transition-
based leakages (i.e., 
memory-related 
leakage)

Unexpected exploitable 
effects (i.e., data 

parallelism)

Relying on complete models of the
micro-architecture



• Inner-Product Masking:
• Data parallelism vs optimal codes
• Avoid data parallelism

• Masking of order 𝑵:
• Avoid expensive solutions, e.g., masking of 

order 𝑁 × 2

• Combine leakage effects, i.e., parallelism + 
transition-based leakage

• Complex micro-architectures:
• More transition-based leakages
• Increased data parallelism

• Further micro-architectural effects:
• Glitch-based leakages
• Coupling-based leakages

• Pairing compiler-based approach:
• Inner-product masking:

• Efficient implementation
• Avoid data parallelism

• Hardware-based mitigations, e.g., 
[Gao20]:
• Potentially reduce performance 

impact
• Potentially increase mitigation 

capabilities
• Non-completeness, e.g., [Gigerl21]

• Efficiently deal with:
• Transition-based leakages
• Glitch-based leakages
• Data parallelism exploitation

30/01/2024L. CASALINO - Soutenance de Thèse 61

Some Perspectives



Thank You!



[Balasch14] Balash, J et al. « On the Cost of Lazy Engineering for Masked Software 
Implementations »

[Gao20] Gao, S., et al. « FENL: an ISE to mitigate analogue micro-architectural leakage. » 

[Gigerl21] Gigerl, B., et al. « Secure and Efficient Software Masking on Superscalar Pipelined
Processors. »

[Meyer20] Meyer, L.D, et al. . « On the Effect of the (Micro)Architecture on the Development of 
Side-Channel Resistant Software. »

[Moos17] Moos, T., Moradi, A. « On the Easiness of Turning Higher-Order Leakages into First-
Order. »

[Seuschek17] Seuschek, H. « Side-channel leakage aware instruction scheduling. »

[Tsoupidi23] Tsoupidi, R.M, et al « Securing Optimized Code Against Power Side Channels. »

[Wang19] Wang, J., « Mitigating power side channels during compilation. »

L. CASALINO - Soutenance de Thèse 63

Bibliography

30/01/2024



L. CASALINO - Soutenance de Thèse 64

Backup!!
30/01/2024



Analysis of the Leakage Model Distributions

L. CASALINO - Soutenance de Thèse 76

Observation
• 𝒟 𝐻𝑊 𝑋 ,𝑋 ≠ 𝒟 𝑆𝐻𝑊 𝑋0,𝑋1 ,𝑋

Consequence
■ Sub-exploiting the available information

ALSO
m𝑒𝑎𝑛 𝑆𝐻𝑊 𝑋0, 𝑋1
= 𝑚𝑒𝑎𝑛 𝐻𝑊 𝑋0 + 𝐻𝑊 𝑋1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Boolean
Masking

Arithmetic
Masking

Inner-Product
Masking

𝒟 𝑆𝐻𝑊 𝑋0,𝑋1 , 𝑋

𝒟 𝐻𝑊 𝑋 ,𝑋

𝐻
𝑊

𝑋

𝑆
𝐻
𝑊

𝑋
0
,𝑋

1
𝑆
𝐻
𝑊

𝑋
0
,𝑋

1
𝑆
𝐻
𝑊

𝑋
0
,𝑋

1
30/01/2024



L. CASALINO - Soutenance de Thèse 78

Security Evaluation—Root Cause Analysis

30/01/2024


