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I 1. ) MICRO-ARCHITECTURE-INDUCED LEAKAGE 15t ORDER CORRELATION WITH PRE-PROCESSING

- * Micro-architecture designs rely on — 0.121 < %&M « \We can pre-process the power
L _,@ ,DJ memory elements, invisible from the O IPM trace to detect 15t order leakage
deISA. T when PPS takes place.
| L %hf | * Memory transitions potentially = 006 « For each sample s, keep the traces
—— Al recombine share values, jeopardizing . for which s’ value is under (or
{e—) et | the proven security of masking [1, 2] © A Bl | N AR gy above) a given threshold k.
| | , » Parallel manipulation of shares might e 45 g9 * Hence, we convert higher-order
e e e D iInduce exploitable leakage. Time Sample leakages into lower-order ones [4].
* No work considered its impact on
masking. EXPLOITING MOMENT-BASED LEAKAGE MODELS
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are read from the Register File. S 0.18 . - - :
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4K+3 ' [ EXECUTE | DECODE | : and X1 at the same time (red square). o 0.09 + Such model better suits the structure of BM.
————————————! * Oneobservation gets both X0 and X1. S J‘k  We can use the first-order moment of ASM
#K + 4 ' EXECUTE | O Ore—a—a—os 2 WA AR and IPM’s leakage distribution to build better
‘ ' 0 45 89 leakage models.
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PPS leakage model: SHW(X0,X1) = HW(X0) + HW (X1)

EXPLOITING PPS vs IPM

We designed several software benchmarks to characterize the impact of PPS. 0.12-

We observe a correlation between the PPS leakage model and the side-channel S = Iglngfo,k% ) \6/1\:]% (;ic;gt]!ooll:o?etrr?:grr?er?\ﬁg;izzsemg
measurements. < A Q&M models to exploit PPS-based

{ © 0007 1PM o leakage.
= 0.7 Control| « Left plot: correlation analysis on above o * Lettfigure: improved correlation with
= 4 Test instruction sequence. © o) A Bviasd POV WP respect to using Hamming Weight
©0.35 » Test: inputs are the shares X0 and X1. 0 A5 29 model, both for ASM and IPM
cta Aﬁﬂj\‘\ « Control: inputs are random variables. Time Sample
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2 i % THE PRACTICAL SECURITY OF MASKED AES-128 € 4R

Time Sample The analyses of encodings provided a first understanding of the practical security of

the different masking schemes. What about fully-masked implementations?
I 2. ) DIFFERENT TYPES OF MASKING We studied 4 AES implementations (unprotected, BM, ASM, IPM), each verified to

be value-based leakage free, but vulnerable due to some micro-architectural effect.

The practical security of masking relies on the chosen masking scheme. We report the most relevant CPA results:
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Noise Variance ¢ The ASM IPM can be brokenvia  The log/alog-based
Boolean (BM)  Arithmetic-Sum (ASM) Inner-Product (IPM) Implementation shows PPS-based leakage multiplication
Y= XX Y — x. X v _x L x low resilience to exploitation, although applies log function to
=Xo ® X - 20 1 = Xo ® (L1 * X,) transition-based resilient to transition- shares. Transitions of

13D THE PRACTICAL SECURITY OF ENCODINGS leakages. 32:%1 leakages by :?ngp(lsef;g;)tigis in IPM
CONTRIBUTIONS SUMMARY (s}

Our work provides new insights concerning the impact of the micro-architecture on

SIMPLE 15t ORDER CORRELATION ANALYSIS the practical security of masked software implementations.

 PPS-based leakage is observable in the software context.

Memory transitions and PPS can leak information on multiple shares. But in
practice, what security provide the different masking encodings?

S 0.05 SHW(X0,X1) N §1§/IM S 0.3 gD (X0,X1) N %&M « PPS leakage can be exploited against all the considered masking schemes by

2 IPM | = IPM slightly adapting [4].

© 0.025 o 0.15 « We exhibit two attacks against IPM: one via PPS leakages, one via the transition-
g ct> based leakage from the logarithm representation of masking encodings in the

O el mdatsta O (e waaiswiia finite field multiplication.
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