
Received 1 July 2023, accepted 15 July 2023, date of publication 24 July 2023, date of current version 15 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3298436

A Tale of Resilience: On the Practical Security
of Masked Software Implementations
LORENZO CASALINO 1, NICOLAS BELLEVILLE 1, DAMIEN COUROUSSÉ 1,
AND KARINE HEYDEMANN2,3
1Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France
2Thales DIS, 13590 Meyreuil, France
3Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Corresponding author: Nicolas Belleville (nicolas.belleville@cea.fr)

This work was supported in part by the French National Research Agency (ANR) under Grant ANR-20-CE39-0010.

ABSTRACT Masking constitutes a provably-secure approach against side-channel attacks. However,
recombination effects (e.g., transitions) severely reduce the proven security. Concerning the software domain,
CPUmicroarchitectures encompass techniques improving the execution performances. Several studies show
that such techniques induce recombination effects. Furthermore, these techniques implicitly induce some
form of parallelism, and the potential associated threat has never been investigated. In addition, the practical
security of masking relies on the chosen masking scheme. Few works analysed the security of software
protected by different masking schemes, and none considered the parallelism threat. Thus, literature lacks
of a more comprehensive investigation on the practical security of software implementations relying on
various masking schemes in presence of micro-architecture-induced recombination effects and parallelism.
This work performs a first step to fill this gap. Specifically, we evaluate the practical security offered by first-
order Boolean, arithmetic-sum and inner-product masking against transitions and parallelism in software.
We firstly assess the presence of transition and parallel-based leakages in software. Secondly, we evaluate
the security of the encodings of the selected masking schemes with respect to each leakage source via micro-
benchmarks. Thirdly, we assess the practical security of different AES-128 software implementations, one
for each selected masking scheme. We carry out the investigation on the STM32F215 and STM32F303
micro-controllers. We show that 1) CPU’s parallel features allow successful attacks against masked
implementations resistant to transition-based leakages; 2) implementation choices (e.g., finite field multipli-
cation) impact on the practical security of masked software implementations in presence of recombination
effects.

INDEX TERMS Masking, processor micro-architecture, side-channel analysis, software masking.

I. INTRODUCTION
Side-channel attacks threat the security of embedded hard-
ware and software components, in particular cryptographic
primitives. To counteract a side-channel attacker, an nth-order
masking countermeasure encodes secret-dependent data into
n + 1 random values, called shares. Under the assumption
of independently leaking shares (ILA) and of sufficient

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek .

noise, a successful attack requires the computation
of higher-order statistical moments of the encoding’s
distribution. The difficulty of this task increases exponen-
tially in n [1], defining the security order of masking.
In practice, physical phenomena such as (memory-state) tran-
sitions [2], glitches [3] and wire cross-talking [4] recombine
shares, reducing the expected security order of a masked
implementation [3], [5].

Several works highlight the pervasiveness of transition-
based leakages in CPU micro-architectures [2], [3],

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 84651

https://orcid.org/0009-0005-4195-8850
https://orcid.org/0000-0001-7634-5767
https://orcid.org/0000-0003-2761-3627
https://orcid.org/0000-0001-7005-6489

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

[6], [7], [8]. Still, few works show the practical secu-
rity difference between different maskings in presence of
transition-based leakages [9], [10].

Besides transitions, the threat posed by parallel process-
ing of shares (PPS) is overlooked for software-masked
implementations,1 although Moos and Moradi show a simple
preprocessing technique to efficiently exploit it in hard-
ware [12]. In software, the micro-architecture of modern
CPUs relies on techniques to increase execution perfor-
mance [13], potentially handling multiple shares per clock
cycle. As such, the PPS implies new potential vulnerabil-
ities in masked software implementations. To the best of
our knowledge, the study of such vulnerabilities remains
unexplored.

This work explores the practical security of several
first-order software masked implementations in presence
of both recombination effects and PPS-based leakages.
We study three masking schemes: the most studied Boolean
(BM) [14] and inner-product (IPM) [15], and the arithmetic-
sum (ASM) [16]. Our investigation firstly assesses the
potential sources of vulnerabilities in software due to
transition-based and PPS-based leakages, and then evaluates
the practical security of masked software with respect to the
identified vulnerabilities. In more details, our methodology
develops in three steps:

1) We characterise micro-architectural leakage effects: we
carefully handcraft micro-benchmarks to assess the
presence of transition-based and PPS-based leakages in
software (Section IV).

2) We characterise the impact of the observed leak-
age effects on masking encodings: we quantify the
leaked information and investigate its exploitability
(Section V, Section VI).

3) We characterise the impact of the observed leakage
effects on masked implementations: once evaluated
leakage impact on the encodings, we assess the practi-
cal security of fully masked software implementations
(Section VII). Specifically, we target as a use-case the
AES-128 block-cipher [17].

To provide a comprehensive analysis, we split the secu-
rity assessment in a first information leakage assessment,
to analyse the information leaked by the encoding or the
fully masked implementation, and in a information leakage
exploitation, to evaluate the exploitability of such informa-
tion. In addition, as the design and implementation of the
execution platform potentially impacts the observed leak-
age [2], [18], [19], we lead our investigation on two different
micro-controllers, an STM32F215 and STM32F303.

A. CONTRIBUTIONS
To the best of our knowledge, we provide the first investiga-
tion on the practical security of different masking schemes in

1To the best of our knowledge, the only work mentioning the existence
of PPS in software is [11], in footnote 1, but this work does not study the
security implications further.

software in presence of both recombination effects and PPS.
In particular we show that:

• PPS-based leakage is observable in the software context
(Section IV).

• PPS induces information leakage for all the considered
masking encodings (Section V).

• Such leakage can be exploited against all the considered
masking schemes by slightly adaptingMoos andMoradi
methodology [12] (Section VI).

• Transitions and PPS-based leakages lead to successful
attacks against all the considered masked implemen-
tations. In particular, we exhibit two attacks against
inner-product masking: one exploiting PPS leakages and
one exploiting a vulnerability due to transition-based
leakage on the logarithm representation of the encodings
within the finite field multiplication implementation
(Section VII).

II. RELATED WORK
The nature of this work touches different areas of the side-
channel domain. This section compares our work with the
most relevant ones from each area.

A. MICRO-ARCHITECTURE-INDUCED LEAKAGES
Several works investigate the different micro-architectural
sources of leakage, spanning through different micro-
architectures and processors. Table 1 summarises the related
state of the art, highlighting the investigated leakage sources,
types of micro-architecture and the CPU use-case(s). Papa-
giannopoulos and Veshchikov assess some recombination
effects (i.e., register overwrite and memory persistence)
violating the ILA on a simple AVR ATMega163 micro-
controller [20]. Marshall et al. assess the presence of multiple
transition-based leakages on different platforms [2]. They
highlight how similar platforms, executing the very same
piece of code, may exhibit or not a transition-based leak-
age. Furthermore, they highlight how speculative execution
potentially introduces unexpected transition-based leakage.
With ARMISTICE, de Grandmaison et al. show how also the
encoding of instructions potentially affects the variability of
the observable leakages [8]. Concerning platforms provided
with superscalar capabilities, Barenghi and Pelosi show, on
the ARMCortex-A7 and ARMCortex-M7, that the increased
parallelism provided by such micro-architectures increase
the sources of transition-based leakage [6]. Besides the per-
vasiveness of transition-based leakage, a micro-architecture
potentially encompasses other recombination effects.
Gao et al. show that intra-register leakage interaction can
break the security of share-slicing implementations [21],
suggesting that leakage is due to glitch-based recombinations
in the barrel-shifter unit of ARM Cortex-M0 and Cortex-M3
implementations. On the contrary, Gigerl et al. show how
signal glitches in the forwarding logic of the superscalar
RISC-V SweRV CPU recombine multiple shares, reducing
the masking security order beyond the factor of 2 predicted

84652 VOLUME 11, 2023

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

TABLE 1. Summary of the state of the art concerning micro-architectural leakage investigations. For each work, we report the targeted leakage source,
the type of investigated micro-architecture and the CPUs analysed. With ‘‘?’’ we mark works for which it is unknown whether a given leakage source
is targeted.

TABLE 2. Summary of the state of the art concerning the practical security analyses of masking in software. For each work, we report the targeted
masking scheme, the leakage source against which we evaluate the practical security and the analyses carried on.

by the theory [3]. As a matter of fact, the current state of
the art focuses on micro-architecture-induced recombination
effects. Our work represents a novel and orthogonal effort:
we show that PPS-based leakage can be observed in software
implementations, even on in-order scalar processors.

B. PRACTICAL SECURITY OF SOFTWARE MASKED
IMPLEMENTATIONS
Few works explore the practical security of masking against
micro-architectural leakages. Table 2 summarises the related
state of the art, highlighting the investigated masking, the
considered leakage sources and the analyses carried on. Beck-
ers et al. show that several deemed-to-be-secure software
implementations, either masked via first-order BM or IPM,
are vulnerable to simple first-order analyses (i.e., CPA and
TVLA) [10]. Although we follow a similar investigation
approach, our goal is different: whereas they aim to verify
the claims concerning the security of open-source implemen-
tations, we evaluate the practical security of different masking
schemes against transition-based and PPS-based leakages.
The work of Wu et al. is closer to ours: they analyse the
practical security of different code-based software instances
of BM and IPM, up to the third masking order [9]. They
rely on first-order analyses (i.e., CPA and TVLA), as well
as Template Attacks (TA) and bivariate CPA. Interestingly,
they analyse the practical security of code-based IPM with
respect to different public vectors (Section III-B), providing
a better characterisation of the enconding’s security. Both
works do not (explicitly) target micro-architectural leakages,
although the leakages they observe for BM implementations
probably result from transition-based leakages. In contrast,
we explicitly take advantage of transition-based and PPS-
based leakages against each studied masking (Section VI and
Section VII). Finally, with respect to the two previous works,

we consider the ASM, a masking scheme employed for ARX
ciphers (e.g., Speck [22]) and post-quantum cryptosystems
(e.g., Kyber [23]).

III. BACKGROUND
This section provides the essential background to understand
our methodology. We first introduce the notations employed
throughout our work. Then, we introduce the masking coun-
termeasures we study, the necessary security concepts and
the potential threat implied by so-called physical effects.
We follow with an overview of three statistical tools we
employ to assess and exploit the information leakage from the
investigated software implementations. Finally, we overview
a trace preprocessing technique able to exploit PPS-based
leakages.

A. NOTATIONS
We refer to a random variable with a capital italic letter,
e.g., X . We denote the sampling space of X as X2k , where
k > 0. We refer to the distribution of a random variable X
as DX . We refer to a realisation of the random variable
X ∈ X2k as x ∈ F2k , where F2k is a finite field. We implicitly
consider any value x ∈ F2k in binary form. We denote the
i-th bit of x as x i, where i ∈ [0, k). We refer to vectors in
bold-face style, e.g., X. We refer to the j-th component of a
vectorX asXj.We refer to a set of n traces, each ofm samples,
with Tn×m, and to the subset of traces at sample 0 ≤ i < m
with Tin×m.

B. MASKING
A side-channel attacker exploits the statistical link between
an observed physical quantity (e.g., the instantaneous power
consumption) and secret-dependent data, which the target
implementation manipulates. The masking countermeasure

VOLUME 11, 2023 84653

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

counteracts such attacks by breaking this statistical link. That
is, given any secret-dependent datum X , masking encodes it
with a so-called (probabilistic) encoding (Def. 1).
Definition 1 (Encoding): Given a random variable X ∈

X2k , where k ≥ 1, the tuple X = (Xi)ni=0 ∈ X (n+1)
2k is an

encoding of X . The random variables Xi ∈ X2k are called
shares. n defines the masking order.
The encoding of X is built from an nth-order masking

scheme M. Informally, an nth-order masking scheme is a
vector-valued function M : X2k 7→ X (n+1)

2k , such that it
satisfies correctness (i.e., the M function is invertible) and
dth-order security (Def. 2).
Definition 2 (dth-Order Security:) Let M be an nth-order

masking scheme. M satisfies d th-order security if and only
if, for each X ∈ X2k , any subset of (at most) d shares of
X = (Xi)ni=0 = M(X) does not depend on X . d ≤ n defines
the security order of M.

Examples of masking schemes are the Boolean masking
(BM) [14], the arithmetic-sum masking (ASM) [16] and
the inner-product masking (IPM) [15]. Respectively, they
generate Boolean (Def. 3), arithmetic-sum (Def. 4) and inner-
product (Def. 5) encodings.
Definition 3 (Boolean Encoding): Let us consider X ∈

X2k , where k ≥ 1 and X = (Xi)ni=0 = BM(X) the
Boolean encoding of X . Then X =

⊕n
i=0Xi, where ⊕ is the

eXclusive OR.
Definition 4 (Arithmetic-Sum Encoding): Let us consider

X ∈ X2k , where k ≥ 1 and X = (Xi)ni=0 = ASM(X) the
arithmetic-sum encoding of X . Then X = ⊞n

i=0Xi, where ⊞
is the arithmetic sum.
Definition 5 (Inner-Product Encoding): Let us consider

X ∈ X2k , where k ≥ 1 and X = (Xi)ni=0 = IPM(X)
the inner-product encoding of X . Then X = ⟨L;X⟩. L =

(1,Li)ni=1 ∈ X (n+1)
2k is a public random vector, and ⟨·; ·⟩ is the

inner-product operator.
The appeal in the masking countermeasure lies within the

provable security framework, composed of:
• Leakage Model: it describes how an implementation
leaks information through a given side channel. Typi-
cally, the leakage model takes the form of an Additive
Gaussian Noise (AGN) function:

L(v) = L(v)d +N (0, σ) (1)

where N (0, σ) is a Gaussian noise, and L(·)d is a
deterministic function. Typically, L(·) is a value-based
leakage function (Def. 6), such as the Hamming-Weight
function:

L(v) = HW(v) +N (0, σ) (2)

where HW is:

HW(x) =

∑
0≤i<k

x i. (3)

• Attacker Model: it describes how many intermedi-
ate variables the attacker can observe (we distinguish

between univariate and multivariate) and the maximum
statistical moment order the attacker can compute.

Definition 6 (Value-based Leakage Function [5]): Let V
be a finite set of intermediate variables and L(·) = L(·)d +

N (0, σ) be a leakage function made of a deterministic part
L(·)d and an (additive) random noise N (0, σ). This leakage
function is value-based if its deterministic part can only take
a value v ∈ V as argument.
Under the so-called Noisy Leakage security model (paral-

lel computation, value-based leakage, univariated attacker),
Chari et al. proved that the masking countermeasure expo-
nentially amplifies (in the number n of shares) the difficulty
of an attack, expressed in number of traces to collect and
analyse [1]. Ishai et al. defined the d-probing security model
(value-based leakage, multivariated attacker), under which an
implementation is secure against any d-variated attacker [24].
Barthe et al. defined the Bounded-Moment (value-based
leakage, univariated attacker), which proves the security of
masked implementations against attackers able to compute
statistical moments of order (up to) d [11].

C. PHYSICAL EFFECTS
Security proofs of masking schemes typically assume a
value-based leakage model, i.e., each share leaks indepen-
dently of the others. The literature refers to it as the Inde-
pendent Leakage Assumption (ILA). However, in practice,
masked implementations do not comply with such hypoth-
esis. Indeed, several physical effects, such as memory tran-
sitions, glitches and coupling, recombine the shares, hence
violating the ILA.

A typical class of models capturing such effects are
the so-called Transition-based Leakage Functions (Def. 7).
A well-known example is the Hamming-Distance leakage
function (Eq. 4).
Definition 7 (Transition-based Leakage Function [5]): Let

V be a set of intermediate variables, andT := {v⊕v′ | ∀ v, v′ ∈

V}∪V the set of all the transitions between these intermediate
variables. A leakage function L(·) is transition-based if its
deterministic part L(·)d takes values t ∈ T as argument.

L(X ,Y) = HW(X ⊕ Y) +N (0, σ) = HD(X ,Y) +N (0, σ)

(4)

Balasch et al. proved that the security order of a d-probing
secure implementation in the value-based leakage model
is halved in the transition-based leakage model (i.e., ⌊

d
2 ⌋).

The literature refers to this as the security-order reduction
theorem [5]. Specific to the context of masked software
implementations, a CPU micro-architecture exposes many
elements violating the ILA, such as micro-architectural reg-
isters (e.g. the inter-stage pipeline registers or the Memory
Data Register of the Load-Store Unit [2], [6]), the for-
warding logic, the Barrel-Shifter Unit, the Arithmetic-Logic
Unit, and the Load-Store Unit [3], [21]. Gigerl et al. show
that, in presence of glitch-based recombinations, the order

84654 VOLUME 11, 2023

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

reduction exceeds the reduction factor of 2 considered in
presence of transition-based leakage [3]. Furthermore, the
micro-architectural properties of complex CPUs also imply
that the security reduction order is also greater than 2 [3].
TheCMOS technology is still mainstream in digital design,

and the overall power consumption of a CMOS-based circuit
is the superposition of the power consumptions of its sub-
elements [25]. We can describe the induced leakage via the
Sum-of-Hamming-Weights leakage function:

L(X ,Y) = SHW(X ,Y) +N (0, σ). (5)

Such AGN model assumes as its deterministic component
the SHW function:

SHW(X ,Y) = HW(X) + HW(Y). (6)

In this paper we use the binary form of the SHW function,
which can be readily extended to accept an arbitrary number
of arguments.

D. PEARSON’s CORRELATION COEFFICIENT
The Pearson’s Correlation Coefficient (PCorrl) is a statistical
tool which quantifies the linear relationship between two
random variables. Given two arbitrary random variable X ,Y ,
the PCorrl is defined as:

ρ(X ,Y) =
E[(X − µX) · (Y − µY)]

σX · σY
(7)

where µ and σ represent, respectively, the mean value and
standard deviation of the given random variable. The coef-
ficient takes values in the interval [−1, +1], where the
extremes indicate perfect linear dependency between the two
variables, whereas a coefficient of 0 indicates no linear depen-
dency.

E. TVLA
When performing security evaluations of a crypto-
graphic implementation, the evaluator ideally aims to
provide the most possible general answer regarding the
security of the implementation (i.e., is the implementation
secure?). The Test Vector Leakage Assessment (TVLA)
[26] reduces the problem at testing whether two sets of
side-channel traces Sfixed and Srandom can be distinguished by
their statistical moments (alternative hypothesis) or not (null
hypothesis). Srandom refers to side-channel traces collected
while the implementation processes a different plaintext for
each trace, whereas Sfixed refers to the usage of the same
plaintext for each trace. In the case of univariate first-order
TVLA, the evaluator computes the t-statistic t:

t =
µ̂fixed − µ̂random√

σ̂ 2
fixed

nfixed
+

σ̂ 2
random

nrandom

(8)

where µ̂fixed, µ̂random refer to the sample mean, σ̂
2
fixed,

σ̂
2
random to the sample variance and nfixed, nrandom to the

number of traces of the fixed and random set, respectively.

The implementation leaks information with a certain prob-
ability if the t-statistic overcomes a given t-threshold. The
t-threshold is normally set to ±4.5, which means we can
reject the null hypothesis with a probability confidence
of 99.999%.

At its core, TVLA relies on hypothesis testing. As such,
it is affected by statistical errors too. We distinguish between
Type-I errors (or false positives) and Type-II errors (or false
negatives) [27]. Type-I errors refer to the cases where the test
fails (null hypothesis rejected), although the implementation
does not leak. Type-II errors, on the other hand, refer to the
acceptance of the null hypothesis, although the implementa-
tion actually leaks. Type-II errors are the most troublesome,
as they would report an implementation as leakage-free when
it is not. As a mitigation technique against these types of
errors, a strategy is to repeat the TVLA several times, each
with a distinct fixed key [26].

F. MUTUAL INFORMATION
TheMutual Information (MI) is an information-theoretic tool
for the quantification of linear and non-linear relationship
between two random variables. The metric has different def-
initions, according to the nature (discrete or continuous) of
the random variable. Equation 9 reports the definition of MI
in the case of two discrete random variables X and Y .

MI(X ,Y) =

∑
x∈X

∑
y∈Y

p(x, y) · log2
p(x, y)

p(x) · p(y)
(9)

Although it can capture any type of relationship, the com-
putation of the MI relies on the knowledge of the joint
probability distribution p(x, y). Generally, the distribution is
unknown and can only be estimated. Therefore, MI cannot be
directly computed, requiring the employment of estimators.
Such estimators rely on different techniques such as his-
tograms, Gaussian mixtures, k-nearest neighbours, or neural
networks [28], [29], [30]. Among these estimators, the empir-
ical Hypothetical Information (HI) provides an upper-bound
to the MI [31], while converging towards MI as the number
of traces increases. As such, HI fits in those contexts where
a conservative analysis of the security of an implementation
(i.e., overestimate the information leakage) is preferable.

G. BIASING LEAKAGE DISTRIBUTIONS (BLD) TO ATTACK
MASKED PARALLEL IMPLEMENTATIONS
The strength behind masking stands in the need, for an
attacker, to compute higher-order statistical moments and/or
to perform multivariate statistical analyses. When consider-
ing hardware masked implementations, security evaluators
assume a parallel computation model. Under this compu-
tation model, the implementation can treat related shares
at the same time sample. Considering a nth-order masking
scheme, the attacker, which observes all the n + 1 shares of
a key-dependent encoded value, needs, at least, the statistical
moment of order n+ 1 to detect any key-dependent informa-
tion. Moos and Moradi proposed a preprocessing technique
to reduce such minimal key-dependent order moment [12].

VOLUME 11, 2023 84655

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

FIGURE 1. SHW distributions obtained for various secret values masked with first-order Boolean masking. x is the secret value, and x1 a random value
used for Boolean masking. Top row: distributions of SHW without preprocessing. Bottom row: distribution obtained when keeping only the lowest k%
values (k = 25% here). While the mean is independent of the secret without preprocessing, it becomes dependent on the secret when only the lowest k%
samples are kept.

Informally, the technique consists in selecting, for each trace
sample, a subset of the measured traces, preserving only
certain leakage values. Such Biasing Leakage Distribution
(BLD) preprocessing biases the leakage distribution of each
trace sample, converting higher-order leakages to lower-order
leakages.

To exemplify this technique, let us consider a first-order
BM encoding of X ∈ X22 . Further, let us assume that the
two shares X0,X1 are processed in parallel, and that the
implementation leaks according to a noise-free SHW model
(Eq. 5). Fig. 1, top row, reports the marginal distributions of
each realisation of X . Each marginal distribution exhibits the
same first-order moment (e.g., mean). That is, the first-order
moment is independent on the encoded value X , as it is
expected for a first-order masking scheme. Fig. 1, bottom
row, reports the marginal distributions of the realisations of X
after a preprocessing keeping the k = 25% of samples with
the lowest values of the leakage distributions [12]. The pre-
processed first-order moments of the marginal distributions
depend on the secret value, making possible to mount first-
order attacks. In practice, the resulting order reduction varies
depending on the value of threshold k , and on the heuristic
used for traces pruning (e.g., keeping the ones with the lowest
leakage values) [12].

IV. PARALLEL PROCESSING OF SHARES IN SOFTWARE
As our goal is to evaluate the practical security of
masked software implementations (Section V, Section VI,
Section VII), we need first to assess the potential sources of

leakage. To this end, we proceed as follows: we firstly provide
a rationale explaining how the complexity of a CPU micro-
architecture potentially induces PPS (Section IV-A). Then,
we describe the three carefully hand-crafted assembler code
(called micro-benchmarks, or UBenches) that we designed to
investigate the presented rationale (Section IV-B). To confirm
or reject the presence of PPS, we run side-channel analyses
on each UBench (Section IV-D).
As presented in Section III-C, the micro-architecture of

modern CPUs constitutes a rich source of recombination
effects; in particular, of transition-based leakages. Hence,
we also include a UBench exercising a transition-based
leakage originating within the micro-architecture. We have
released these micro-benchmarks (C and binary code) as
publication artefacts (https://zenodo.org/record/8094516).

A. RATIONALE
The micro-architecture of modern CPUs extensively relies
on hardware-oriented techniques to increase the instruc-
tion throughput [13]. Due to instruction pipelining, the
micro-architecture is partitioned into several stages, where
each stage takes care of a part of the instruction life
cycle. Fig. 2 depicts a simplified 3-stage, in-order, micro-
architecture. In such example, the Instruction Fetch (IF)
stage fetches the next instruction to be executed, the Instruc-
tion Decode (DE) interprets the instruction (e.g., selecting
operands from the Register File), whereas the Instruction
Execute (EXE) executes the instruction. We remark
that, in such example, the execution of memory-related

84656 VOLUME 11, 2023

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

FIGURE 2. Simplified model of a 3-stage, in-order micro-architecture.

instructions (e.g., load and store) requires 2 clock cycles,
whereas arithmetic-logic instructions require 1. For memory
accesses, the target address is sent to the memory in the first
cycle of the EXE stage. During the second cycle, the data to be
stored is sent to the memory, or the data to be read is received
from the memory. The address computation phase employs
the ALU. To avoid any resource conflict, during the address
computation phase, the fetch and decode stages are stalled.
Although being quite simple, such model captures the micro-
architecture organisation of real micro-controller-graded
CPUs (e.g., ARM Cortex-M3 and Cortex-M4 [7], [8]). With
such model in mind, it gets easy to understand how PPS
can happen in software. Indeed, as mentioned above, each
stage takes care of one part of the instruction life cycle:
the execution of the DE stage happens in parallel with the
execution of the EXE stage. As a consequence, whenever the
two stages of the simplified micro-architecture manipulate
related shares, the micro-architecture processes shares in
parallel.

B. MICRO-BENCHMARKS
We design three distinct micro-benchmarks, one for each
potential PPS case we identified. Each UBench shares the
same structure: a preamble followed by a workload (List-
ing 1). We implement the UBenches in Thumb-2 assembler,
targeting ARM-based target platforms (Section IV-C).
The UBench preamble consists in a sequence of

machine instructions preparing the architectural and micro-
architectural states and the inputs for the workload. The
preparation of the micro-architectural state consists in the
randomization of the state of specific elements (e.g., micro-
architectural registers, memory data-path), which may oth-
erwise induce unintended leakage. The workload consists
in a sequence of machine instructions, which attempts to
exercise a desired leakage effect. The trigger_high()
and trigger_low() functions, which surround the work-
load, respectively start and stop the collection of power-based
side-channel traces. To clearly identify the workload-induced
leakage effect, we pad the workload’s beginning and end-
ing with eor.w instructions provided with random inputs.
To make clear the handling of these values, we comment each
UBench instruction with its effect.

1) NOTATION
We denote the UBench target words as X0 and X1, whereas
rndN refers to one of the UBench random input values.
We denote with R_val a generic 32-bit register containing
the value val. As a special case, we denote with R_destN
a 32-bit register containing the result of the N -th UBench
instruction. We refer to the immediate address of a value
val with addr[val]. We denote a constant value const
with #const.

Listing. 1. Common Structure of Leakage Micro-Benchmarks.

2) PPS-RELATED UBench #1
The first PPS-related UBench stimulates the parallel manip-
ulation of bytes when loading a specific one from a given
memory address. The preamble crafts a 32-bit word and
stores it on the memory stack. Such word contains the least-
significant byte (LSB) of both X0 and X1. The workload
reads theX0’s LSB by accessing to its address. Themanipula-
tion of the LSB of each share allows different word’s layouts.
Listing 2 reports the workload employed in our evaluations,
hereafter referred to as UB-SHW-LDRB. We comment the
workload with a byte-oriented representation of the word’s
layout (LSB on the right).

Listing. 2. UB-SHW-LDRB workload.

3) PPS-RELATED UBench #2
The second PPS-related UBench stimulates the parallel
manipulation of values during the readings of X0 and X1
from the memory and the register file, respectively. Listing 3
reports the corresponding workload, hereafter referred to as
UB-SHW-LDR-EOR. The ldr.w instruction enters the EXE
stage at clock cycle #k. X0 enters the micro-architecture at
clock cycle #k+1. Due to the pipeline stall inserted during
the address generation, the eor.w instruction passes the DE
stage at clock cycle #k+1. During the DE stage, the X1 is
read from the register file. As a consequence, at clock cycle
#k+1, the values X0 and X1 are simultaneously alive in the
micro-architecture.

4) PPS-RELATED UBench #3
The third PPS-related UBench stimulates the parallel manip-
ulation of values by processing X0 and X1, each handled by a

VOLUME 11, 2023 84657

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

Listing. 3. UB-SHW-LDR-EOR workload.

distinct ALU instruction. Listing 4 reports the corresponding
workload, hereafter referred to as UB-SHW-MOV-EOR. The
mov.w instruction (and thus, its input operand X0) enters in
the EXE stage at clock cycle #k. At the same clock cycle,
the eor.w instruction enters the DE stage, where the target
value X1 is read from the register file. As a consequence,
the values X0 and X1 will be both in the micro-architecture
within the same clock cycle #k.

Listing. 4. UB-SHW-MOV-EOR workload.

5) TRANSITION-RELATED UBench
This UBench tests the transition-based leakage stemming
from the update of the inter-stage pipeline registers. Listing 5
reports the corresponding workload, hereafter referred to
as UB-HD. At clock cycle #k, the first eor.w instruction
enters the DE stage. X0 is read from the register file and
stored in the DE/EXE inter-stage register. At clock cycle
#k+1 the second eor.w enters the DE stage. X1 is read from
the register file, and it is stored in the DE/EXE register. The
update of the DE/EXE potentially causes a transition-based
leakage.

Listing. 5. UB-HD workload.

C. EXPERIMENTAL SETUP
We execute the UBenches on the STM32F215 and
STM32F303 micro-controllers. The former hosts a ARM
Cortex-M3 CPU, whereas the latter a ARMCortex-M4 CPU.

We compile each UBench with arm-none-eabi-gcc
version 9.2.1. We tune the compilation with -Os, -mthumb,
and -mcpu=cortex-m3 and -mcpu=cortex-m4 for the
STM32F215 and the STM32F303, respectively. To minimise
execution time variability across runs of the same code,
we fetch code from the Flash, disable the instruction and
data cache and set the Flash access latency to 0 clock cycles.
We collect power-based side-channel traces via the Chip-
Whisperer setup, with an acquisition board CW-308UFO and
the CW-1200 oscilloscope [32]. We set the micro-controllers
clock frequency to 7.384MHz, and the oscilloscope samples
the power consumption at a rate of 29.538MHz. Hence,

4 samples per clock cycle are measured. The STM32F215
comes with an internal voltage regulator, which we left
turned-on and set to 1.2V [33].

D. EVALUATION
For each UBench, we generate two datasets of randomly
chosen input values: the test dataset and the control dataset.
Then, for each input dataset, we collect a trace set of
30, 000 power-consumption traces, each of 90 samples.
Finally, for both the collected traces sets, we compute
ρ(L(X0,X1)d,Ti30k×90), where i ∈ [0, 90) and X0, X1
belong to the test dataset (i.e., the control input dataset is
unused). With this procedure, we verify that any correlation
stems from X0 and X1 manipulation, not from other experi-
mental factors.

The two leftmost columns of Fig. 1 report the results under
the SHW leakage model (Eq. 5), whereas the two right-
most columns report the results under the HD leakage model
(Eq. 4). Except for the UB-SHW-LDRB on the STM32F215,
we observe that, when using the proper leakage model
(i.e., SHW and HD for PPS-oriented and transition-oriented
UBenches, respectively) we observe a higher correlation in
the test traces, confirming the presence of the targeted leak-
age effect. When looking for other effects (i.e., transitions
in the PPS-oriented UBenches or PPS in transition-oriented
UBenches), we do not observe any significant correlation,
indicating that the searched effect is negligible. Concerning
the UB-SHW-LDRB, as explained in Section IV-B, we test all
the different word layouts. For the sake of brievity, we only
report the results of UB-SHW-LDRB for the layout illustrated
in Listing 2, but all the other word layouts give similar results.

Finally, we observe lower correlation values for the
STM32F215 as compared to the STM32F303. Such dif-
ference, potentially stemming from micro-architectural dif-
ferences and/or the noise generated by the STM32F215’s
internal regulator (Section IV-C), provides us two distinct
noise settings for the same leakage model. We will take
advantage of this difference to explore the practical resilience
of BM, ASM and IPM in different noise settings.

In this section, we have experimentally shown that both
transition-based and PPS-based leakages potentially occur in
software. In the following section, we employ the developed
UBenches to assess the security ofmasking encodings against
transition-based and PPS-based leakages.

V. EVALUATION OF THE PRACTICAL RESILIENCE OF
MASKING ENCODINGS
In the previous section, we verified the presence of both
transition-based and PPS-based leakages on our two tar-
get micro-controllers. This section evaluates the practical
resilience of first-order masking encodings against such leak-
age sources. We develop the evaluation in two settings: an
ideal one (leakage model and leakage effect match); a real
one (leakage model and leakage effect potentially differ).
For the latter case, we rely on the UBenches designed to
assess the presence of PPS and transition-based leakages

84658 VOLUME 11, 2023

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

FIGURE 3. PCorrl-based evaluation of PPS-based and transition-based leakages. Each row reports the PCorrl from a different UBench: first row for
UB-SHW-LDRB (Listing 2), second row for UB-SHW-LDR-EOR (Listing 3), third row for UB-SHW-MOV-EOR (Listing 4), fourth row for UB-HD (Listing 5).
The two first columns report the results under the SHW leakage model, and the two last columns under the HD leakage model. The first and third
column report the results for the STM32F215 board, whereas the second and fourth ones for the STM32F303 board. Each UBench is evaluated on two
sets (test and control) of 30, 000 power-consumption traces.

(Section IV-B). We analyse the encodings’ resilience in
two steps: (a) quantification and comparison of the leaked
information (Section V-A); (b) exploitation of the leaked
information through first-order analyses (Section V-B).

A. THEORETICAL EVALUATION
As remarked in Section IV-D, the SHW and HD leakage
models might not perfectly describe the actual behaviour of
our target boards. In order to evaluate the leakage resilience in
the case suchmodels capture the leakage behaviour, we firstly
conduct an information-theoretic analysis. For such purpose,
we numerically estimate MI(X ,L(X0,X1)), where X ∈ X24

and the shares X0,X1 ∈ X24 encode X according to BM,
ASMor IPM. For IPM,we arbitrarily selectL = (1, 6) ∈ F2

24
.

We describe the leakage L via an AGN leakage model (Eq. 1).
According to the targeted leakage effect, we employ either
L(·)d = SHW or L(·)d = HD.
Fig. 4 reports the results of the information-theoretic leak-

age evaluation. We observe that the BM encoding leaks
the most, while the IPM one leaks the least. Comparing the
information leakage between the two leakage models, the
SHWmodel not only provides the least information quantity,
but it decreases faster. This is witnessed by the slope of the
curves, as the SHW curve reports a slope of −2, whereas the
HD one reports a slope of −1. As reported by Duc et al.,
such slope reports the minimal statistical moment to break
the encoding [34].
We verify this observation by mounting a first-order cor-

relation analysis on simulated power-consumption traces.

VOLUME 11, 2023 84659

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

FIGURE 4. Information-Theoretic leakage resilience analyses results. The
plot reports the numerically estimated MI(X , L(X0, X1)) evolution
according to an increasing noise variance σ2 (both in Log10 scale).
We describe the leakage L as an AGN leakage model (Eq. 1), where
L(·)d = SHW or L(·)d = HD, for PPS-based and transition-based leakages,
respectively. Due to estimation errors, for σ2 ≥ 102, the SHW curve
diverges from the expected straight line. As IPM reaches perfect
independence from X in the HD case, we omit the related curve.

FIGURE 5. PCorrl-based leakage resilience analyses results on simulated
traces. The plot reports ρ(HW(X), L(X0, X1)) according to an increasing
noise variance σ2 (Log10 scale), for the HD and SHW models.
We generate 1, 000, 000 power-consumption traces, each of 1 sample.
We simulate the traces according to an AGN leakage model (Eq. 1), where
L(·)d = SHW or L(·)d = HD, for PPS-based and transition-based leakages,
respectively. The metric does not detect correlation with X under the SHW
for BM, ASM and IPM.

Specifically, we generate 1, 000, 000 traces, each of
1 sample, via an AGN leakage model, and we compute
ρ(HW(X),L(X0,X1)), where X ,X0,X1 ∈ X24 . Fig. 5 reports
the results of the first-order analyses. As expected, under
the HD model, we detect correlation for both the BM and
ASM encodings. Consistently with the information-theoretic
analysis, we do not detect correlation for the IPM encoding.
Concerning the SHW case, the first-order analysis does not
identify correlation with the encoded value X . Such evidence
illustrates the need of, at least, a second-order statistical
moment to correlate with X .
From the information-theoretic analyses, we observed

that ASM and IPM encodings tend to better mitigate
transition-based and PPS-based leakages. We corroborated
such analyses by first-order moment analyses, evaluating the
correlation between the encoded value and the simulated
power-consumption. We observed results consistent with the
information-theoretic ones. Furthermore, we highlighted how
first-order moments cannot detect any information in the
presence of PPS-based leakage.

Having obtained an overview of the resilience of first-
order BM, ASM and IPM in an ideal setting (i.e., the leakage
models perfectly describes the target leakage effect), in the
next section we evaluate the resilience of such encodings in a
more realistic context.

B. EXPERIMENTAL EVALUATION
In the previous sub-section, we analysed the information-
theoretic resilience of first-order BM, ASM and IPM.
We completed the analyses with a PCorrl-based evaluation on
simulated traces. Such evaluation remarked the better leakage
resilience of ASM and IPM encodings. Although the interest
provided by an ideal setting (i.e., simulated traces), masked
software implementations are executed in an imperfect
one, where the leakage behaviour potentially deviates from
the hypothetical one. As such, in this section we evalu-
ate the leakage resilience of the three masking schemes
when the first-order encodings are manipulated on our two
boards, the STM32F215 and STM32F303. For this purpose,
we re-use the UBenches of Section IV-B, which stimulate
PPS-based and transition-based leakages. Differently from
the information-theoretic analyses, for IPM we arbitrarily
select L = (1, 170) ∈ F2

28
.

For each UBench, we capture 4, 000, 000 traces, each of
90 samples. We first quantify the leaked information by
computing HI(X ,Ti4M×90). We set the random target inputs
X0, X1, manipulated by each UBench, to the realisation of
the shares X0, X1 ∈ X28 , in each of the studied masking
encodings BM, ASM, and IPM. As explained in Section III-
F, the HI provides an upper bound of MI. This property is of
particular interest in our case as we want to assess conserva-
tively the amount of leakage. HI also converges towards the
true MI as the number of traces gets higher [31].
The first two columns of Fig. 4 present the results

of the HI analysis for the considered masking encod-
ings and UBench. We compute the HI via the ENNEMI
Python library [35] which implements a k-nearest-neighbour
algorithm. Although the high number of traces and the uni-
variate setting which favours HI convergence, we observe
weak information leakage on the STM32F215 for both UB-
SHW-LDR-EOR and UB-SHW-LDRB. As shown in Fig. 1,
PPS leakage seems very low on this board, whichmay explain
this result. On the STM32F303, UB-SHW-LDR-EOR and
UB-SHW-LDRB show a tiny peak of information, whose
significance is uncertain. By contrast, peaks of information
are clearly visible for UB-SHW-MOV-EOR and the UB-HD
on both boards. As expected, the BM encoding leaks the most
information, while leakage is hardly visible for the IPM for
the given number of traces.

For completeness, we also run first-order moment anal-
yses on the same traces sets. Specifically, we compute
ρ(HW(X),Ti4M×90) where i ∈ [0, 90). The last two columns
of Fig. 4 report the results.
Unexpectedly, we observe a correlation peak for the UB-

SHW-MOV-EOR. As explained in Section V-A, a first-order

84660 VOLUME 11, 2023

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

FIGURE 6. Experiment-based quantification of the transition-based and PPS-based leakages. Each row reports the PCorrl from a different UBench: first
row for UB-SHW-LDRB (Listing 2), second row for UB-SHW-LDR-EOR (Listing 3), third row for UB-SHW-MOV-EOR (Listing 4), fourth row for UB-HD
(Listing 5). The first two columns report the HI metric, whereas the last two report the PCorrl metric. The first and third column reports the results for the
STM32F215 board, whereas the second and fourth one for the STM32F303 board. For each UBench and board, we compute the PCorrl on a 4, 000, 000
power-consumption trace set.

moment cannot detect correlation with an encoded value via
PPS-based leakage. Still, the peak takes place at the same time
sample where we verified the presence of PPS-based leakage
(Section III). Hence, we ascribe the observed correlation to a
recombination effect that occurs simultaneouslywith the PPS
event.

Up to now, we evaluated the leakage resilience of different
masking encodings against transition-based and PPS-based
leakages. Concerning transition-based leakages, the results
highlight the better leakage resilience of ASM and IPM
encodings. Concerning the PPS-based ones, although the use
of 4, 000, 000 traces, the HI-based analyses hardly identify
any PPS-based information leakage. Nonetheless, a different
approach e.g., use of the BLD preprocessing [12], could
better take advantage of the existing information leakage.

With this last remark, we employ the BLD preprocess-
ing proposed by Moos and Moradi [12]. Their approach
takes advantage of the PPS, converting higher-order leakages

into lower-order ones, reducing the security order of the
encoding (Section III-G). We directly focus on experimental
analyses, as simulation-based ones are extensively provided
in the original work [12]. Due to its high correlation with
the PPS-based leakage (Fig. 1), we limit our analysis to the
trace set collected with the UB-SHW-LDRB execution on
the STM32F303. From experimental attempts, we identified
k = 10% (i.e., 400, 000 traces per sample) as a good
threshold. Fig. 7 provides the correlation curves from the
BLD-based analyses. This time, we detect correlation peaks
for both BM and ASM encodings, confirming the potential
exploitability of PPS-based leakage.

This section has shown that transition-based and PPS-
based leakages represent a concrete vulnerability in software
masking implementations, leaking exploitable information
through simple first-order analyses. Among the selected can-
didates, the IPMwas found to be the least vulnerable, prevent-
ing even the exploitation of higher-order leakages by means

VOLUME 11, 2023 84661

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

FIGURE 7. Evaluation of the BLD approach (Section III-G). We collect
4, 000, 000 power-consumption traces and apply the BLD approach for
k = 10. We compute the PCorrl by means of the HW model. We collect the
traces during the execution of the UB-SHW-LDRB (Listing 2) on the
STM32F303 board.

of the BLD approach. Yet, such approach relies on the HW
model’s distribution of the encoded valueX , independently of
the targeted masking scheme and leakage source. In reality,
the distribution of HD and SHW model changes with the
masking encoding. In the following section, we take advan-
tage of this observation to break all the evaluated software
masked implementations of AES with first-order analysis.

VI. EXPLOITATION OF LEAKAGE MODEL DISTRIBUTION
IN IMPROVED CORRELATION ATTACKS
In the previous section, we have evaluated the resilience of
BM, ASM and IPM first-order encodings, remarking the bet-
ter leakage resilience of ASMand IPMones. This result stems
from the consistent employment of the HW tomodel the leak-
age of the encoded variable X . In general, such model pro-
vides low discrimination capabilities when targeting recom-
bination effects as transitions. For instance, given a first-order
IPM encoding of an arbitrary X , HD(X0,X1) ̸= HW(X).
The same observation holds for PPS-based leakages. In this
section, we take advantage of the above remark to enhance
the practical security investigation of masking encodings.
We proceed as follow: we first elaborate on the unsuitabil-
ity of the HW model when targeting transition-based and
PPS-based leakages; we discuss how to exploit the leak-
age model’s distribution to build more efficient ones. Then,
we put in practice the developedmodels, mounting first-order
analyses and compare the new security results with the pre-
vious ones.

A. RATIONALE
When targeting leakages involving multiple shares, gener-
ally the HW model provides low discrimination capabilities.
Considering the case of transitions and PPS-based leakages,
the HD and SHW distributions are different from the HW’s
(Eq. 10, Eq. 11).

D(HD(X0,X1),X) ̸= D(HW(X),X) (10)

D(SHW(X0,X1),X) ̸= D(HW(X),X) (11)

Fig. 8 reports D(HD(X0,X1),X) and D(SHW(X0,X1),X) for BM,
ASM and IPM. As the distributions differ, so the marginal
distributions do. It is possible to exploit such difference to
define (statistical-)moment-based leakage models.

For instance, we can associate to each X ’s realisation the
first-order moment of the marginal D(HD(X0,X1),X=x):

HDfo(x) =
1

|F28 |
2

∑
xi∈F28 ,x=

⊙
i xi

HD(x0, x1) (12)

Nevertheless, such moment-based approach cannot
improve the PCorrl results in the IPM case, as the
D(HD(X0,X1),X) is independent of X (and thus, any statistical
moment is independent of X).

Concerning the SHW model, which we use to model
the PPS-based leakages, the D(SHW(X0,X1),X)’s first-order
moment is independent of X , for all the three masking
schemes. Thus, we can not straightforwardly employ SHWfo
(Eq. 13) model.

SHWfo(x) =
1

|F28 |
2

∑
xi∈F28 ,x=

⊙
i xi

SHW(x0, x1) (13)

Yet, we can resort on the BLD preprocessing to make
D(HD(X0,X1),X)’s mean secret-dependent. We define the
biased version of the SHWfo model:

SHWfo,k%(x) =
1

|F28 |
2

∑
xi∈F28 ,x=

⊙
i xi

SHWk%(x0, x1) (14)

where

SHWk%(x0, x1) =

{
SHW(x0, x1), if SHW(x0, x1) ∈ Ok%(x)
0, otherwise

and Ok%(x) contains the k% lowest (or highest) realisation of
SHW(X0,X1) when X = x.

B. EVALUATION
We start with a first evaluation of the HDfo leakage model
for transition-based leakages. We target the ASM scheme,
as for BM we cannot improve the results, and the IPM
is intrinsically immune to this leakage type. We compute
ρ(HDfo(X),Ti4M×90), with T4M×90 the trace set collected
from the STM32F303 board executing UB-HD. Fig. 9
confirms the better suitability of the first-order moment
leakage model, as we get a higher PCorrl value with
respect to the HW model. Then, we test the improve-
ments concerning the exploitation of PPS-based leakages.
We employ the SHWfo,k% model against each masking
scheme, computing ρ(SHWfo,k%(X),Ti4M×90), with T4M×90
the trace set collected from the STM32F303 board executing
UB-SHW-LDRB. We experimentally select k = 10%
(i.e., 400, 000 traces per each 0 ≤ i < 90 sample) as it works
well for BM, ASM and IPM. Fig. 10 compares the PCorrl
when employing the HWmodel and our moment-based leak-
age model. The HW allows the detection of correlation peaks
in the case of BM and ASM schemes, but none in the IPM

84662 VOLUME 11, 2023

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

FIGURE 8. Distribution of the HD and SHW leakage models. Given X ∈ X24 , the first row reports D(HD(X0,X1),X), whereas the second one reports
D(SHW(X0,X1),X), where X0, X1 ∈ X24 represent the shares obtained from the application of BM (first column), ASM (second column) or IPM (third

column) to X .

FIGURE 9. Experiment-based comparison of the HDfo and the HW
leakage models. We consider the ASM case. We compute PCorrl on
4, 000, 000 power-consumption traces. We collect traces during the
execution of the UB-HD (Listing 5) on the STM32F215 and the STM32F303
boards.

case. In contrast, our moment-based model not only improves
the correlation results for the ASM, but it detects a correlation
peak in the IPM case.

Such results corroborate the observations made in
Section V, remarking the better leakage resilience of ASM
and IPM encodings against transition-based and PPS-based
leakages.

VII. SIDE-CHANNEL RESILIENCE OF SOFTWARE MASKED
AES-128
With SectionV and SectionVIwe assessed the practical secu-
rity of different first-order masking encodings. Such analyses
are fundamental get insights on the achievable security of
masked implementations. Inner-product encoding showed
perfect resistance against transition-based leakage, while
Boolean and arithmetic encodings were more vulnerable.
All masking encodings showed vulnerability to PPS-based
leakage. We question how these findings translate on a full
implementation.

This section aims at evaluating the impact of transition-
based and PPS-based leakages on 4 software implementations

FIGURE 10. Experiment-based comparison of the HW and the SHWfo,k%
model. We consider the case of the BLD-based PCorrl analyses, for k = 10
(Section III-G). For the SHWfo,k% model, we set k = 10. We compute
PCorrl over 4, 000, 000 power-consumption traces. We collect the traces
during the execution of the UB-SHW-LDRB (Listing 2) on the STM32F303
board.

of the AES-128 block-cipher: an unprotected version (vanilla
from now on) and three masked ones, one for each masking
scheme investigated. We have released all our investigated
implementations (both C and binary codes) as publication
artefacts (https://zenodo.org/record/8094516).

Our security assessment splits in two phases: at first,
we evaluate whether the masked implementations leak
information; the second one assess the resistance of such
implementation against the exploitation of the (potential)
leakage. The first phase relies on the TVLA methodol-
ogy (Section III-E) to provide an assessment independent
on the class of attacker. The second phase relies on the
same techniques employed to analyse the masking encodings
(Section V, Section VI). Specifically, we evaluate the security
with and without the BLD technique (Section III-G). We start
by exploiting univariate first-order moment leakages, then

VOLUME 11, 2023 84663

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

we exploit univariate higher-order moment leakages with
filtering. This last phase is particularly important to assess the
practical security against PPS, since its first-order moment
leakages can’t be directly exploited (Section V-A).

A. EXPERIMENTAL SETUP
The vanilla implementation follows the FIPS-PUB-197 spec-
ification [17], except for the key-scheduling: the implemen-
tation generates the next round key between the SubByte and
the MixColumns steps.

Each first-order masked implementation follows by the
manual application of the related masking scheme to the
vanilla implementation. In particular, the BM and IPM
ones follow the specification of Rivain et al. [36] and
Balasch et al. [15], respectively. For the IPM version,
we resort to L = (1, 170) ∈ F2

28
, the same we employed

for the experiment-based analyses (Section V, Section VI).
We implement the finite field multiplication using log/exp
tables [37].

Concerning the ASM implementation, an inherent diffi-
culty is the masking of the field addition (i.e., the eXclusive-
OR, XOR). Indeed, the XOR is non-linear with respect to
the arithmetic-sum operation. We mask the XOR operation
by means of a masked look-up table. A straightforward tab-
ulation of the operation would require 216 byte of memory.
To reduce the memory consumption, we tabulate the XOR
on 4 bits, where the concatenation of the least (and most)
significant inputs’ nibbles indexes the table. We compute the
XOR between two 8-bit inputs as a double access to such
table: one to process the least significant nibbles of the inputs,
and one to process the most significant ones. We remark
that, the output carry of the arithmetic-sum potentially leaks
information on the processed values. To prevent such leakage,
we pre-charge the landing bit of the output-carry with a fresh
random value.

In the vanilla implementation, for performance reasons,
we tabulate the SBOX and the XTIME functions. In the
ASM implementation, we implement the same functions by
means of masked look-up tables. Concerning the BM and
IPM implementations, we compute those functions on the fly.

We resort to the experimental setup introduced in
Section IV-C (software toolchain and side-channel measure-
ment setup). We develop each implementation in C language,
and compile them with the compiler toolchain and compi-
lation options reported in Section IV-C. Table 3 reports the
mean execution time, number of PRNG calls, and memory
impact of each AES-128 implementation. We report such
parameters for both STM32F215 and STM32F303. Each
masked implementation draws fresh randomness from the
xoroshiro64** 1.0 PRNG [38]. The execution time from
Table 3 includes time spent in the PRNG.We remark the long
execution time (500, 000 clock cycles on the STM32F215)
for the ASM implementation. We ascribe it to the
MixColumns step, which performs several accesses to the
table-based XOR implementation. We remark that our

experimental setup provides us with correctly-aligned side-
channel traces. Hence, we do not require any re-alignment of
the side-channel traces.

For the purpose of our analyses (e.g., leakage resilience
against physical effects), we have to guarantee the correct
application of the masking scheme. Each of the selected
scheme considers a value-based leakage model. Thus,
we verify that no value-based leakage can be detected from
each implementation. To this end, we run TVLA analyses on
simulated power-traces collected during the execution of each
implementation on a ISA-level simulator of the ARMv7 pro-
file. Specifically, we simulate the power consumption stem-
ming from the usage of the register file and memory requests
via load and store instructions. For all the implementations,
we accept the null hypothesis (i.e., the implementation does
not leak in the value-based model), proving the correct appli-
cation of the three considered masking schemes.

B. INFORMATION LEAKAGE EVALUATION
As a first step in the leakage resilience assessment of
our AES-128 implementations, we proceed with the TVLA
methodology. Precisely, we analyse the full first round of
each implementation, except for the ASM implementation:
as pointed out in Section VII-A, the MixColumns step counts
for the largest part of the execution time. To reduce the trace
collection time without compromising the validity of our
results, we exclude the ASM’sMixColumns from the leakage
evaluation. As introduced in Section III-E, the TVLA allows
an evaluator to determine whether an implementation leaks or
not, independently on the particular attack or leakage model.
For the vanilla, BM and ASM implementations, we collect
15, 000 power-consumption traces for both fixed and ran-
dom sets, respectively. Concerning the IPM implementation,
we observed that it is characterised by a higher leakage
resilience (Section V, Section VI). To be more confident
in its evaluation, perform the same assessment with 90, 000
power-based traces for both the fixed and random trace set.
As explained in Section III-E, the TVLA methodology is
prone to errors of type I and II, where the latter represents
the most problematic ones. To cope with them, for each
implementation, we repeat the TVLA assessment two times,
each with a distinct fixed key, and we measure the maximum
absolute t-statistic for each sample point of the traces. Fig. 11
reports the TVLA results for each AES-128 implementation
and each target board.

The vanilla, BM and ASM implementations leak infor-
mation along the whole first round. As we verified that the
masking countermeasure is correctly applied at binary level,
and as first-order statistical moments cannot detect leakage
from PPS, we ascribe such leakage to recombination effects
(e.g., transitions).

We remark that the ASM implementation presents fewer
leaking samples than the BM. The algebraic structure of the
ASM encoding potentially contribute to such observation.

Unexpectedly, the leakage assessment on the IPM imple-
mentations reveal several leakage points along the full first

84664 VOLUME 11, 2023

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

TABLE 3. Mean execution time (in clock cycles), number of calls to the PRNG, and segment size (in bytes) of each AES-128 implementation.

FIGURE 11. TVLA results on the 4 AES-128 implementations. In red, we report the maximum t-statistic between two t-tests. In blue, the t-statistic
threshold (±4.5) for the null hypothesis rejection. We execute each t-test by using a distinct fixed key. The first and third columns refer to the
STM32F215 board, whereas the second and fourth ones to the STM32F303 board. Each plot refers to a 15, 000-vs-15, 000 t-test, except for the IPM
AES-128, which refers to a 90, 000-vs-90, 000 t-test.

round. We found out that the source of such leakages stem
from recombination effects that impact the log/exp-based
field multiplication. Specifically, we verified the statisti-
cal dependence between HD(log3(X0), log3(X1)) and the
encoded value x. We conjecture that the non-linear nature
of the logarithm function introduces some bit-interaction
effect between the share’s bits. Such effect counteracts the
randomness diffusion of the IPM, making transition-based
leakage again exploitable. Yet, we remark that, despite the
higher number of employed traces, we observe a way lower
magnitude of the t-statistic with respect to the one of the other
implementations.

C. INFORMATION LEAKAGE EXPLOITATION
In the previous section, we assessed the leakage resilience of
our AES-128 implementations. We observed results consis-
tent to the encoding analyses (Section V, Section VI), except
for the IPM. In fact, we observed unexpected leakage stem-
ming from the finite fieldmultiplication. Despite the presence
of leakage, the TVLAmethodology does not provide any clue
concerning the exploitability of the leaked information.
With this section, we explore the resilience of our soft-

ware masked implementations against information leak-
age exploitation; specifically, against univariate side-channel
attacks.

To this end, we rely on standard, BLD-based
(Section III-G) and moment-based-model (Section VI) CPA
attacks. For each implementation and target board, we mea-
sure 1, 000, 000 power traces.

The side-channel analysis proceeds as follows. We analyse
the usage of the first secret key byte during the SubByte step
of the first round, and we compute ρ(L(X)d,T

j
1M×m), where

m varies according to the target implementation. Table 4
summarises the leakagemodels L(·)d employed to attack each
implementation.

For the IPM implementations, we also target the SubByte’s
input, which comes as result of the field implementation.
We employ the first-order-moment leakage model HDfo,log:

HDfo,log(x) =
1

|F28 |
2

∑
xi∈F28

HD(log3(x0), log3(x1)) (15)

Fig. 7 reports the results of the different CPA attacks, and
Table 5 reports the minimum number of traces required to
mount a successful CPA attack. Despite the correct applica-
tion of the masking scheme on the binaries, we exploit only
140 and 241, 000 traces to break the BM and ASM imple-
mentations, respectively. Consistently with the result from
Section VI, the HDfo model improves the attack efficiency
against the ASM implementation, reducing up to ×8.6 times

VOLUME 11, 2023 84665

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

FIGURE 12. CPA results for the four AES-128 implementations. In grey,
the wrong key hypotheses, whereas in red the correct one. Fig. 12f, 7g
and 7h report the PCorrl in Log10 scale. For each implementation,
we employ a different leakage model (Table 4). For the SHWfo,k% model,
the X-axis reports the number of collected traces (i.e., before trace
filtering). Each row refers to a different implementation/leakage model
combination. First and second columns refer, respectively, to the
STM32F215 and STM32F303 board.

the minimum number of traces to mount a successful CPA
attack, with respect to a plain use of the HW model.

By targeting the SBOX input, we successfully retrieve
the target key byte on IPM implementations. This suggests

TABLE 4. Summary of the leakage models used for the side-channel
analysis of each AES-128 implementation.

that the design of masking schemes should also consider the
implementation of the employed algorithms (e.g., finite field
multiplication).We remark that the attack on the STM32F215
takes longer to succeed. This may be due to the lower accu-
racy of the HD model for this device and/or the higher noise
affecting the platform (Section IV-D).

We conclude the leakage exploitation analyses with the
BLD-based CPA attacks (Section III-G). We evaluate the
resilience of each implementation according to several k val-
ues. Table 6 reports the rank of the correct key hypothesis with
1, 000, 000 traces, and the minimum traces number to reach
that rank. On the STM32F303, the correct key hypothesis
frequently appears among the best correlated key candidates.
Table 6 reports the number of traces necessary to observe the
correct key byte hypothesis among the 4 best correlated key
candidates. Then, an attacker can brute-force the 416 possible
128-bit keys.

We remark that (1) the choice of the threshold value k is
relevant to mount a successful CPA attack, (2) that low k
values increase the probabilities of a successful side-channel
attack.We ascribe this to the higher noise setting compared to
more controlled context of the encoding analyses (Section V,
Section VI).
Our results emphasise the threat that PPS and recombina-

tion effects represent. Also, we highlight the practical secu-
rity impact of different representations of data in a masked
software implementation (e.g., logarithm of a share). As a
first guideline to mitigate PPS-based leakages exploitation,
developers should avoid packing shares within the same
word (Listing 2). However, such condition is necessary, but
not sufficient, as PPS potentially stems from other sources
(Section IV-B).

VIII. DISCUSSION
In this section, we warn about unanticipated sources of weak-
nesses in masked implementations, then we discuss how
parallel-oriented architectures and programming models can
introduce PPS in software, and we give some principles to
prevent the vulnerabilities created by PPS.

A. ON THE RESILIENCE OF IPM TO TRANSITION-BASED
LEAKAGE
In Section V, we have shown that IPM encodings are immune
to transition-based leakages, which is consistent with litera-
ture knowledge. Yet, in Section VII we were able to success-
fully attack IPM masked implementations through a leakage

84666 VOLUME 11, 2023

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

TABLE 5. Minimum number of traces to mount a successful CPA attack against the AES-128 implementations. We report failed in case of attack failure
with 1, 000, 000 traces.

TABLE 6. Key ranking of correct key guess when employing the SHWfo,k% against IPM implementations. We report the correct key-guess rank and
related number of traces for k ∈ {0.1%, 0.2%, . . . , 1%, 2%}. We omit the entries for k > 2%, as we did not succeed in the attack. The number of traces
corresponds to the number of collected traces (i.e., not the number of traces actually analysed).

model targeting such leakages. We found the root cause in the
use of logarithms in the finite field multiplication implemen-
tation. Transition-based leakages on logarithm representation
of the encodings induced exploitable leakage. Such gap
underlines the importance of studying the masking resistance
both theoretically and practically. It suggests that the different
representations of masked encodings used in an implementa-
tion should all be considered for security assessment.

B. PPS AND PARALLEL-ORIENTED ARCHITECTURES
The PPS threat emerges whenever data processing paral-
lelism can be achieved. From a hardware point-of-view, PPS
readily extends to any architecture encompassing any kind of
feature implying data parallelism. In our work, we focused on
simplemicro-architectures encompassing instruction pipelin-
ing, which implies a sort of data parallelism. Gigerl et
al. show that super-scalar micro-architectures exhibit more
sources of transition-based leakage [3] due to pipeline
depth and multiple issuing of instructions. In such micro-
architectures, data parallelism is exacerbated, and so the
possible occurrence of PPS.

Instruction Set Extensions (ISE) play an important role in
the introduction of PPS. Miayjan et al. suggest the employ-
ment of SIMD (Single Instruction Multiple Data) ISE to
provide efficient and secure software masked implementa-
tions [39]. The SIMD ISE enables data-level parallel process-
ing, handling multiple data via a single instruction [13]. The
explicit data parallelism naturally implies PPS. Such remark
extends also to GPU architectures, designed to intrinsically
support data-level parallelism. Still, we are not aware of any
work concerning their usage to accelerate software masked

implementations. Finally, FPGAs represent an interesting
case: they can be employed for either the implementation of
hardware implementations, or for the implementation of full
CPUs [40]. In both cases, the designs might rely on some
parallel features, e.g., [41], potentially introducing the PPS
vulnerability.

C. PREVENTING PPS IN SOFTWARE
PPS emerges whenever the micro-architecture handles
related shares in parallel. As discussed, architectures encom-
passing parallel features and certain programming models
potentially introduce the PPS threat. As a naïve solution, the
programmer should rely on programming techniques which
do not promote data parallelism, and execute the implemen-
tation on architecture not endowed with parallel features.
Yet, such approach would increase the already high cost of
a masked implementation, in particular for masked instances
of order n > 1.
Instead, we advocate for a more principled approach, based

on the concept of Non-Completeness. Non-Completeness
is a security property defined in the context of Threshold
Implementations [42]. Informally, by seeing an n-th order
masked algorithm as a composition of sub-functions, each
sub-function has to handle no more than n shares. Gaspoz and
Dhooghe extend this property to provide necessary security
properties against micro-architecture-induced recombination
effects [43]. In particular, we remark their Horizontal Regis-
ter Non-Completeness as a necessary condition to avoid PPS.
Such property contrasts certain programming techniques,
e.g., share-slicing [21], which aim at the efficient implemen-
tation of masked software implementations.

VOLUME 11, 2023 84667

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

Yet, their notion of non-completeness does not take into
consideration the PPS stemming from the pipeline’s depth
(i.e., number of pipeline stages). Indeed, PPS originates also
from related shares manipulated in different pipeline stages.
It is possible to extend the non-completeness property at
pipeline level, requiring that the pipeline does not process
more than n shares at a time. Gigerl et al. suggest a stricter
version of this Pipeline Non-Completeness property, separat-
ing the processing of related shares according to the pipeline’s
depth and number of instructions that can be executed in
parallel to prevent glitch-based leakage [3].

Admittedly, register and pipeline non-completeness might
not be sufficient to prevent PPS. Indeed, the register file,
caches and memory, potentially store all the shares of an
encoding. Static power leakage potentially allows an attacker
to observe these shares, enabling successful attacks [44]. The
risk implied by static power leakage is still unexplored in the
software context.

We conclude this discussion by remarking that the
IPM scheme (more generally, the family of code-
based masking) can amplify the security order naturally
expected [9], [45], [46]. That is, given a masking of order n,
according to the particular public vector L, the security order
can be higher than n. Although we analysed IPM instantiated
with non-optimal codes (i.e., which do not amplify the secu-
rity order), the use of optimal codes can be a sound way to
better mitigate PPS-based leakage. We leave as an interesting
future work the investigation of the practical security guaran-
tees of optimal code-based software masked implementations
when register and pipeline non-completeness are satisfied.

IX. CONCLUSION
Recent literature has highlighted the CPU micro-architecture
as a rich source of recombination effects (e.g., transitions),
which severely decrease the security of masking. Although
the pervasiveness of such effects, our work shows that they
do not represent the only threat to the practical security of
masking in software: the parallel processing of share (PPS),
exercised by a CPUmicro-architecture, represents a potential
threat too. Relying on an adaptation of the preprocessing
technique proposed by Moos and Moradi [12], we show how
to exploit PPS-based leakage against first-order instances
of Boolean, arithmetic-sum and inner-product masking. Fur-
thermore, despite the fact that some schemes, such as the
inner-product masking, provide immunity to transition-based
leakage, particular operations can remove such immunity.
Specifically, we show how the employment of the log opera-
tion in the fieldmultiplication algorithm allows the successful
exploitation of transition-based leakage against the inner-
product masking.

ACKNOWLEDGMENT
The authors thank Arnaud de Grandmaison and Emanuele
Valea for their helpful comments and many fruitful
discussions, Romain Frappier for its contributions to the
implementations of masked AES software, and Arnaud de

Grandmaison for its contributions to the verification of
first-order security in the value-based leakage model.

REFERENCES
[1] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, ‘‘Towards sound approaches

to counteract power-analysis attacks,’’ in Advances in Cryptology—
CRYPTO. Berlin, Germany: Springer, 1999.

[2] B. Marshall, D. Page, and J. Webb, ‘‘MIRACLE: MIcRo-architectural
leakage evaluation: A study of micro-architectural power leakage across
many devices,’’ TCHES, vol. 2022, no. 1, pp. 175–220, Nov. 2021.

[3] B. Gigerl, R. Primas, and S. Mangard, ‘‘Secure and efficient soft-
ware masking on superscalar pipelined processors,’’ in Advances in
Cryptology—ASIACRYPT. Cham, Switzerland: Springer, 2021.

[4] T. D. Cnudde, B. Bilgin, B. Gierlichs, V. Nikov, S. Nikova, and V. Rijmen,
‘‘Does coupling affect the security of masked implementations?’’ in Proc.
COSADE, 2017, pp. 1–18.

[5] J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F. Standaert, ‘‘On the
cost of lazy engineering for masked software implementations,’’ in Proc.
CARDIS, 2014, pp. 64–81.

[6] A. Barenghi and G. Pelosi, ‘‘Side-channel security of superscalar CPUs:
Evaluating the impact of micro-architectural features,’’ in Proc. DAC,
2018, pp. 1–6.

[7] A. Barenghi, L. Breveglieri, N. Izzo, and G. Pelosi, ‘‘Exploring Cortex-M
microarchitectural side channel information leakage,’’ IEEE Access, vol. 9,
pp. 156507–156527, 2021.

[8] A. D. Grandmaison, K. Heydemann, and Q. L. Meunier, ‘‘ARMISTICE:
Microarchitectural leakage modeling for masked software formal verifica-
tion,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 41,
no. 11, pp. 3733–3744, Nov. 2022.

[9] Q.Wu,W. Cheng, S. Guilley, F. Zhang, andW. Fu, ‘‘On efficient and secure
code-based masking: A pragmatic evaluation,’’ IACR Trans. Cryptograph.
Hardw. Embedded Syst., vol. 2022, pp. 192–222, Jun. 2022.

[10] A. Beckers, L. Wouters, B. Gierlichs, B. Preneel, and I. Verbauwhede,
‘‘Provable secure software masking in the real-world,’’ in Proc. COSADE,
2022, pp. 215–235.

[11] G. Barthe, F. Dupressoir, S. Faust, B. Grégoire, F. Standaert, and
P. Strub, ‘‘Parallel implementations of masking schemes and the bounded
moment leakage model,’’ in Advances in Cryptology—EUROCRYPT.
Cham, Switzerland: Springer, 2017.

[12] T. Moos and A. Moradi, ‘‘On the easiness of turning higher-order leakages
into first-order,’’ in Proc. COSADE, 2017, pp. 153–170.

[13] J. L. Hennessy and D. A. Patterson,Computer Architecture: A Quantitative
Approach, 5th ed. San Francisco, CA, USA: Morgan Kaufmann, 2012.

[14] L. Goubin and J. Patarin, ‘‘DES and differential power analysis the ‘dupli-
cation’ method,’’ in Proc. Int. Workshop Cryptographic Hardw. Embedded
Syst., 1999, pp. 158–172.

[15] J. Balasch, S. Faust, andB.Gierlichs, ‘‘Inner productmasking revisited,’’ in
Advances in Cryptology—EUROCRYPT. Berlin, Germany: Springer, 2015.

[16] T. S. Messerges, ‘‘Securing the AES finalists against power analy-
sis attacks,’’ in Proc. Int. Workshop Fast Softw. Encryption, 2001,
pp. 150–164.

[17] (2001). Advanced Encryption Standard (AES). NIST. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf

[18] L. D. Meyer, E. D. Mulder, and M. Tunstall, ‘‘On the effect of the
(micro) architecture on the development of side-channel resistant soft-
ware,’’ Cryptol. ePrint Arch., Tech. Paper 2020/1297, 2020.

[19] V. Arora, I. Buhan, G. Perin, and S. Picek, ‘‘A tale of two boards: On the
influence ofmicroarchitecture on side-channel leakage,’’ inProc. CARDIS,
2021, pp. 80–96.

[20] K. Papagiannopoulos and N. Veshchikov, ‘‘Mind the gap: Towards
secure 1st-order masking in software,’’ in Proc. COSADE, 2017,
pp. 282–297.

[21] S. Gao, B. Marshall, D. Page, and E. Oswald, ‘‘Share-slicing: Friend
or foe?’’ IACR Trans. Cryptograph. Hardw. Embedded Syst., vol. 2019,
pp. 152–174, Nov. 2019.

[22] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers, ‘‘The SIMON and SPECK families of lightweight block
ciphers,’’ Cryptol. ePrint Arch., Tech. Paper 2013/404, 2013.

[23] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehle, ‘‘CRYSTALS-kyber: A CCA-secure
module-lattice-based KEM,’’ in Proc. IEEE Eur. Symp. Secur. Privacy,
Apr. 2018, pp. 353–367.

84668 VOLUME 11, 2023

L. Casalino et al.: Tale of Resilience: On the Practical Security of Masked Software Implementations

[24] Y. Ishai, A. Sahai, and D. A. Wagner, ‘‘Private circuits: Securing hardware
against probing attacks,’’ in Advances in Cryptology—CRYPTO. Berlin,
Germany: Springer, 2003.

[25] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing
the Secrets of Smart Cards. Berlin, Germany: Springer, 2007.

[26] T. Schneider and A. Moradi, ‘‘Leakage assessment methodology: A clear
roadmap for side-channel evaluations,’’ in Proc. CHES. Academic, 2015,
pp. 495–513.

[27] S. M. Ross, Introductory Statistics, 3rd ed. 2010.
[28] N. Veyrat-Charvillon and F. Standaert, ‘‘Mutual information analysis:

How, when and why?’’ in Proc. CHES, 2009, pp. 429–443.
[29] A. Kraskov, H. Stögbauer, and P. Grassberger, ‘‘Estimating mutual infor-

mation,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.,
vol. 69, no. 6, Jun. 2004, Art. no. 066138.

[30] V. Cristiani, M. Lecomte, and P. Maurine, ‘‘Leakage assessment through
neural estimation of the mutual information,’’ in Proc. ACNS, 2020,
pp. 144–162.

[31] O. Bronchain, J. M. Hendrickx, C.Massart, A. Olshevsky, and F. Standaert,
‘‘Leakage certification revisited: Bounding model errors in side-channel
security evaluations,’’ in Advances in Cryptology—CRYPTO. 2019.

[32] CW1200 ChipWhisperer-Pro. NewAE. Accessed: Apr. 16, 2023. [Online].
Available: https://rtfm.newae.com/Capture/ChipWhisperer-Pro/

[33] CW308-STM32F2—VCC Internal Regulator. NewAE. Accessed:
Apr. 16, 2023. [Online]. Available: https://rtfm.newae.com/Targets/
UFO%20Targets/CW308T-STM32F/#vcc-int-supply

[34] A. Duc, S. Faust, and F.-X. Standaert, ‘‘Making masking security proofs
concrete (or how to evaluate the security of any leaking device), extended
version,’’ J. Cryptol., vol. 32, no. 4, pp. 1263–1297, Oct. 2019.

[35] P. Laarne. (2022). Polsys/Ennemi: 1.1.1. [Online]. Available:
https://doi.org/10.5281/zenodo.5848134

[36] M. Rivain and E. Prouff, ‘‘Provably secure higher-order masking of AES,’’
in Cryptographic Hardware and Embedded Systems. Berlin, Germany:
Springer, 2010.

[37] D. Goudarzi andM. Rivain, ‘‘How fast can higher-order masking be in soft-
ware?’’ in Advances in Cryptology—EUROCRYPT. Cham, Switzerland:
Springer, 2017.

[38] D. Blackman and S. Vigna, ‘‘Scrambled linear pseudorandom number
generators,’’ ACM Trans. Math. Softw., vol. 47, no. 4, pp. 1–32, Dec. 2021.

[39] A. Miyajan, Z. Shi, C.-H. Huang, and T. F. Al-Somani, ‘‘Accelerat-
ing higher-order masking of AES using composite field and SIMD,’’ in
Proc. IEEE Int. Symp. Signal Process. Inf. Technol. (ISSPIT), Dec. 2015,
pp. 575–580.

[40] T. Gokulan, A. Muraleedharan, and K. Varghese, ‘‘Design of a 32-bit,
dual pipeline superscalar RISC-V processor on FPGA,’’ in Proc. 23rd
Euromicro Conf. Digit. Syst. Design (DSD), Aug. 2020, pp. 340–343.

[41] J. Vliegen, O. Reparaz, and N. Mentens, ‘‘Maximizing the through-
put of threshold-protected AES-GCM implementations on FPGA,’’ in
Proc. IEEE 2nd Int. Verification Secur. Workshop (IVSW), Jul. 2017,
pp. 140–145.

[42] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen, ‘‘Higher-order
threshold implementations,’’ in Advances in Cryptology—ASIACRYPT,
vol. 8874. Berlin, Germany: Springer, 2014.

[43] J. Gaspoz and S. Dhooghe, ‘‘Threshold implementations in software:
Micro-architectural leakages in algorithms,’’ IACR Trans. Cryptograph.
Hardw. Embedded Syst., vol. 2023, pp. 155–179, Mar. 2023.

[44] A. Moradi, ‘‘Side-channel leakage through static power: Should we care
about in practice?’’ in Cryptographic Hardware and Embedded Systems—
CHES. Berlin, Germany: Springer, 2014.

[45] W. Wang, F. Standaert, Y. Yu, S. Pu, J. Liu, Z. Guo, and D. Gu, ‘‘Inner
product masking for bitslice ciphers and security order amplification for
linear leakages,’’ in Proc. CARDIS, 2016, pp. 174–191.

[46] W. Cheng, S. Guilley, C. Carlet, J.-L. Danger, and S. Mesnager,
‘‘Information leakages in code-based masking: A unified quantification
approach,’’ IACR Trans. Cryptograph. Hardw. Embedded Syst., vol. 2021,
pp. 465–495, Jul. 2021.

LORENZO CASALINO received the master’s
degree in computer science and engineering from
Politecnico di Milano, Italy, in 2020. He is
currently pursuing the Ph.D. degree with the
CEA-List, Grenoble, France. His research inter-
ests include side-channel analyses, related micro-
architecture-aware countermeasures, and their
automated application.

NICOLAS BELLEVILLE received the Ph.D. degree
from Université Grenoble Alpes, France, in 2019.
Since 2019, he has been a Researcher with
the CEA-List, Grenoble, France. His research
interests include side-channel attacks, their coun-
termeasures, and the automated application of
countermeasures during compilation.

DAMIEN COUROUSSÉ received the Ph.D.
degree from Institut National Polytechnique de
Grenoble, in 2008. He has been a Research Engi-
neer and a Senior Expert with the CEA-List,
since 2011. His research interests include embed-
ded software and its interaction with hardware,
compilation, and runtime code generation for per-
formance and security, with a recent focus on
hardware security.

KARINE HEYDEMANN received the Ph.D.
degree in computer science from the
University of Rennes 1, in 2004. She was an
Associate Professor with the LIP6, Sorbonne Uni-
versity, from 2006 to 2022. She is currently a
Senior Expert Architect with Thales DIS. She
is also an Associate Researcher with the LIP6.
Her research interests include hardware micro-
architecture, compilation, code optimization, and
physical attacks, including modeling of hardware

fault injection effects, automated code hardening, and robustness analysis.

VOLUME 11, 2023 84669

